Elevating CO2 selective conversion: Insights into copper-based single atom alloy catalysts

被引:0
|
作者
Tian, Di [1 ]
Wang, Zefeng [2 ]
Xu, Zhou [1 ]
Zhu, Yiquan [1 ]
Yan, Yan [1 ]
Yang, Jifeng [1 ]
He, Siyuan [1 ]
Xue, Zaibin [1 ]
Wang, Zhenzhen [1 ]
Li, Kang [1 ]
Fan, Wenxuan [1 ]
Xue, Miaomiao [1 ]
Qu, Zehua [3 ]
Xia, Wei [1 ]
Liu, Mingkai [1 ]
机构
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Anhui, Peoples R China
[2] Yunnan Univ Chinese Med, Sch Basic Med Sci, Yunnan Key Lab Integrated Tradit Chinese & Western, Kunming 650500, Yunnan, Peoples R China
[3] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon dioxide conversion; Cu-based nanomaterial; Single-atom alloy; C-1; production; C2+ production; ELECTROCHEMICAL REDUCTION; DESIGN; CARBON; ELECTROREDUCTION; HYDROGENATION; PERFORMANCE; NANOWIRES;
D O I
10.1007/s42114-024-01105-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electrochemical reduction of carbon dioxide (CO2RR) stands as a pivotal pathway for mitigating atmospheric CO2 levels and realizing carbon neutrality objectives. Among the investigated metal elements, copper (Cu) has emerged as a key heterogeneous catalyst capable of facilitating the formation of C2+ products in CO2RR. However, challenges persist, including subpar activity and selectivity in CO2RR, hampering the widespread application of Cu-based catalysts. The construction of single-atom sites represents a promising strategy to enhance the catalytic efficiency of CO2 conversion. Heteroatom doping offers a means to alter the coordination environment and influence the electronic state of active sites. Single-atom alloy catalysts (SAAs), with their distinctive structure and superior catalytic selectivity, have emerged as significant players in the realm of CO2RR. This review work provides a comprehensive summary of recent advancements in Cu-based SAAs for CO2RR, with particular emphasis on synthesis strategies and selective CO2 conversion. Ultimately, this review aims to offer fresh insights into the design and preparation of Cu-based SAAs for enhanced CO2RR performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jiang, Jian-Chao
    Chen, Jun-Chi
    Zhao, Meng-die
    Yu, Qi
    Wang, Yang-Gang
    Li, Jun
    NANO RESEARCH, 2022, 15 (08) : 7116 - 7123
  • [2] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jian-Chao Jiang
    Jun-Chi Chen
    Meng-die Zhao
    Qi Yu
    Yang-Gang Wang
    Jun Li
    Nano Research, 2022, 15 (8) : 7116 - 7123
  • [3] Electrochemical Approaches to CO2 Conversion on Copper-Based Catalysts
    Zhang, Gong
    Li, Lulu
    Zhao, Zhi-Jian
    Wang, Tuo
    Gong, Jinlong
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (03): : 212 - 222
  • [4] Insights into the Development of Copper-based Photocatalysts for CO2 Conversion
    Zhang, Zhiquan
    Rhimi, Baker
    Liu, Zheyang
    Zhou, Min
    Deng, Guowei
    Wei, Wei
    Mao, Liang
    Li, Huaming
    Jiang, Zhifeng
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (12)
  • [5] Mechanism insights on single-atom catalysts for CO2 conversion
    Wu, Qing
    Wu, Chongchong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4876 - 4906
  • [6] Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts
    Zhi, Xing
    Jiao, Yan
    Zheng, Yao
    Vasileff, Anthony
    Qiao, Shi-Zhang
    NANO ENERGY, 2020, 71
  • [7] Electrocatalytic Reduction of CO2 on Copper-Based Catalysts
    Liu, Mengyan
    Wang, Yuanshuang
    Deng, Wen
    Wen, Zhenhai
    PROGRESS IN CHEMISTRY, 2018, 30 (04) : 398 - 409
  • [8] Insights into the mechanism in electrochemical CO2 reduction over single-atom copper alloy catalysts: A DFT study
    Liu, Tianfu
    Song, Guohui
    Liu, Xiaoju
    Chen, Zhou
    Shen, Yu
    Wang, Qi
    Peng, Zhangquan
    Wang, Guoxiong
    ISCIENCE, 2023, 26 (10)
  • [9] Applications of Single-atom Catalysts in CO2 Conversion
    Qin Yongji
    Luo Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (09):
  • [10] Mechanism of CO and CO2 hydrogenation over copper-based catalysts
    Studt, Felix
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253