Enhanced Early Detection of Oral Squamous Cell Carcinoma via Transfer Learning and Ensemble Deep Learning on Histopathological Images

被引:0
|
作者
Kaur, Gurjot [1 ]
Gupta, Sheifali [1 ]
Ibrahim, Ashraf Osman [2 ,3 ]
Bharany, Salil [1 ]
Elghazawy, Marwa Anwar Ibrahim [4 ]
Osman, Hadia Abdelgader [4 ]
Ahmed, Ali [5 ]
机构
[1] Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
[2] Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
[3] Positive Computing Research Center, Emerging and Digital Technologies Institute, India
[4] Computer Department, Applied College, Northern Border University, Arar, Saudi Arabia
[5] Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh,21589, Saudi Arabia
关键词
D O I
10.14569/IJACSA.2024.0150978
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:766 / 776
相关论文
共 50 条
  • [1] Classifying histopathological images of oral squamous cell carcinoma using deep transfer learning
    Panigrahi, Santisudha
    Nanda, Bhabani Sankar
    Bhuyan, Ruchi
    Kumar, Kundan
    Ghosh, Susmita
    Swarnkar, Tripti
    HELIYON, 2023, 9 (03)
  • [2] An Ensemble Deep Learning Model for Oral Squamous Cell Carcinoma Detection Using Histopathological Image Analysis
    Das, Madhusmita
    Dash, Rasmita
    Kumar Mishra, Sambit
    Kumar Dalai, Asish
    IEEE ACCESS, 2024, 12 : 127185 - 127197
  • [3] Early Diagnosis of Oral Squamous Cell Carcinoma Based on Histopathological Images Using Deep and Hybrid Learning Approaches
    Fati, Suliman Mohamed
    Senan, Ebrahim Mohammed
    Javed, Yasir
    DIAGNOSTICS, 2022, 12 (08)
  • [4] Duck Pack Optimization With Deep Transfer Learning-Enabled Oral Squamous Cell Carcinoma Classification on Histopathological Images
    Shetty, Savita K.
    Patil, Annapurna P.
    INTERNATIONAL JOURNAL OF GRID AND HIGH PERFORMANCE COMPUTING, 2023, 15 (02)
  • [5] Deep transfer learning with improved crayfish optimization algorithm for oral squamous cell carcinoma cancer recognition using histopathological images
    Mahmoud Ragab
    Turky Omar Asar
    Scientific Reports, 14 (1)
  • [6] Customized Transfer Learning Models for Oral Squamous Cell Carcinoma Classification and Detection using Histopathological H&E Stained Images
    Singaraju Ramya
    R. I. Minu
    K. T. Magesh
    SN Computer Science, 5 (7)
  • [7] Effectiveness of deep learning classifiers in histopathological diagnosis of oral squamous cell carcinoma by pathologists
    Sukegawa, Shintaro
    Ono, Sawako
    Tanaka, Futa
    Inoue, Yuta
    Hara, Takeshi
    Yoshii, Kazumasa
    Nakano, Keisuke
    Takabatake, Kiyofumi
    Kawai, Hotaka
    Katsumitsu, Shimada
    Nakai, Fumi
    Nakai, Yasuhiro
    Miyazaki, Ryo
    Murakami, Satoshi
    Nagatsuka, Hitoshi
    Miyake, Minoru
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Effectiveness of deep learning classifiers in histopathological diagnosis of oral squamous cell carcinoma by pathologists
    Shintaro Sukegawa
    Sawako Ono
    Futa Tanaka
    Yuta Inoue
    Takeshi Hara
    Kazumasa Yoshii
    Keisuke Nakano
    Kiyofumi Takabatake
    Hotaka Kawai
    Shimada Katsumitsu
    Fumi Nakai
    Yasuhiro Nakai
    Ryo Miyazaki
    Satoshi Murakami
    Hitoshi Nagatsuka
    Minoru Miyake
    Scientific Reports, 13
  • [9] Intelligent Deep Learning Enabled Oral Squamous Cell Carcinoma Detection and Classification Using Biomedical Images
    Alanazi, Adwan A.
    Khayyat, Manal M.
    Khayyat, Mashael M.
    Elnaim, Bushra M. Elamin
    Abdel-Khalek, Sayed
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [10] Oral squamous cell carcinoma detection using EfficientNet on histopathological images
    Albalawi, Eid
    Thakur, Arastu
    Ramakrishna, Mahesh Thyluru
    Bhatia Khan, Surbhi
    Sankaranarayanan, Suresh
    Almarri, Badar
    Hadi, Theyazn Hassn
    FRONTIERS IN MEDICINE, 2024, 10