Detection of crack bar deterioration at offshore wind turbine supports using generative adversarial networks and autoencoders

被引:0
|
作者
Prieto-Galarza, Ricardo [1 ,2 ]
Tutivén, Christian [3 ]
Vidal, Yolanda [1 ,4 ]
机构
[1] Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besós (CDB), Eduard Maristany, 16, Barcelona,08019, Spain
[2] Universidad Ecotec, Km. 13.5 Samborondón, Samborondón,EC092302, Ecuador
[3] ESPOL Polytechnic University, Escuela Superior Politécnica Del Litoral, Faculty of Mechanical Engineering and Production Science (FIMCP), Mechatronic Engineering, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
[4] Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, Barcelona,08028, Spain
来源
Journal of Physics: Conference Series | 2024年 / 2647卷 / 18期
关键词
Accelerometer data - Anomaly detection models - Auto encoders - Input sample - Mechanism-based - Network models - Network training - Response mechanisms - Training phasis - Training process;
D O I
182010
中图分类号
学科分类号
摘要
14
引用
收藏
相关论文
共 50 条
  • [1] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Xukang Luo
    Ying Jiang
    Enqiang Wang
    Xinlei Men
    EURASIP Journal on Advances in Signal Processing, 2022
  • [2] Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders
    Luo, Xukang
    Jiang, Ying
    Wang, Enqiang
    Men, Xinlei
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [3] Synthesizing credit data using autoencoders and generative adversarial networks
    Oreski, Goran
    KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [4] Estimation of wind turbine wakes with generative-adversarial networks
    Bove, M.
    Lopez, B.
    Toutouh, J.
    Nesmachnow, S.
    Draper, M.
    WAKE CONFERENCE 2023, 2023, 2505
  • [5] Wind Turbine Fault Diagnosis with Imbalanced SCADA Data Using Generative Adversarial Networks
    Wang, Hong
    Li, Taikun
    Xie, Mingyang
    Tian, Wenfang
    Han, Wei
    ENERGIES, 2025, 18 (05)
  • [6] Crack Detection Based on Generative Adversarial Networks and Deep Learning
    Chen, Gongfa
    Teng, Shuai
    Lin, Mansheng
    Yang, Xiaomei
    Sun, Xiaoli
    KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (04) : 1803 - 1816
  • [7] Crack Detection Based on Generative Adversarial Networks and Deep Learning
    Gongfa Chen
    Shuai Teng
    Mansheng Lin
    Xiaomei Yang
    Xiaoli Sun
    KSCE Journal of Civil Engineering, 2022, 26 : 1803 - 1816
  • [8] Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders
    Kim, Jin-Young
    Bu, Seok-Jun
    Cho, Sung-Bae
    INFORMATION SCIENCES, 2018, 460 : 83 - 102
  • [9] Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks
    Ahmad, Bilal
    Sun, Jun
    You, Qi
    Palade, Vasile
    Mao, Zhongjie
    BIOMEDICINES, 2022, 10 (02)
  • [10] Offshore wind turbine fault data enhancement and diagnosis based on an improved generative adversarial network
    基于改进生成对抗网络的海上风电机组故障数据增强及诊断
    2025, 53 (01): : 114 - 124