Reduction short-chain volatile fatty acids and CO2 into alcohols in microbial electrosynthesis system

被引:1
|
作者
Chu, Wenjuan [2 ]
Wu, Zhiyong [3 ]
Li, Xiaohu [1 ]
Alvarado-Morales, Merlin [4 ]
Liang, Dawei [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 102206, Peoples R China
[2] China Tobacco Henan Ind Co Ltd, Technol Ctr, Zhengzhou 450000, Peoples R China
[3] Henan Agr Univ, Coll Tobacco Sci, Flavors & Fragrance Engn & Technol Res Ctr Henan P, Zhengzhou 450002, Peoples R China
[4] Tech Univ Denmark, Dept Chem & Biochem Engn, Soltofts Pl, DK-2800 Lyngby, Denmark
基金
中国国家自然科学基金;
关键词
Microbial electrosynthesis; Biocatalyst; CO; 2; reduction; Alcohols; Medium optimization; CARBON-DIOXIDE; MIXED CULTURE; CORRESPONDING ALCOHOLS; SYNGAS FERMENTATION; ELECTROLYSIS CELL; CARBOXYLIC-ACIDS; HYDROGEN; CONVERSION; CHEMICALS; BUTANOL;
D O I
10.1016/j.renene.2024.121751
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial electrosynthesis system (MES) is an attractive strategy for converting CO2 into value-added chemicals and biofuels. In this work, it is for the first time demonstrates the feasibility of producing biofuels (eg., ethanol and butanol) from CO2 and volatile fatty acids (eg. acetic acid and butyric acid) by utilizing Clostridium ljungdahlii ERI-2 as biocatalyst in MES. The highest ethanol and butanol concentration of 12.52 f 0.57 and 5.85 f 0.78 mM are obtained at -0.9 V (vs Ag/AgCl) cathode potential, respectively. Furthermore, the trace elements content in growing medium is optimized to improve the production rate of ethanol from acetic acid/CO2 and butanol from butyric acid/CO2. Adding suitable Ni2 and WO4 2-in the growing medium resulted in the maximum ethanol and butanol production can be increased 43.3 f 3.2 % and 32.1 f 3.5 %, respectively. The analysis of redox cofactor concentration indicates that the NADH is the main reducing force for the improvement of alcohols production. Based on these results, strategies for further improvement of CO2 to alcohols conversion can be formulated.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Capacitive biocathodes driving electrotrophy towards enhanced CO2 reduction for microbial electrosynthesis of fatty acids
    Modestra, J. Annie
    Mohan, S. Venkata
    BIORESOURCE TECHNOLOGY, 2019, 294
  • [2] Gut microbial short-chain fatty acids and the risk of diabetes
    Lau, Wei Ling
    Vaziri, Nosratola D.
    NATURE REVIEWS NEPHROLOGY, 2019, 15 (07) : 389 - 390
  • [3] Microbial Short-Chain Fatty Acids and Blood Pressure Regulation
    Pluznick, Jennifer L.
    CURRENT HYPERTENSION REPORTS, 2017, 19 (04)
  • [4] Microbial Electrosynthesis of Bioalcohols through Reduction of High Concentrations of Volatile Fatty Acids
    Gavilanes, Jose
    Reddy, C. Nagendranatha
    Min, Booki
    ENERGY & FUELS, 2019, 33 (05) : 4264 - 4271
  • [5] Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids
    May, Karolline S.
    den Hartigh, Laura J.
    NUTRIENTS, 2021, 13 (10)
  • [6] Microbial Short-Chain Fatty Acids and Blood Pressure Regulation
    Jennifer L. Pluznick
    Current Hypertension Reports, 2017, 19
  • [7] Short-chain fatty acids
    Lecerf, J. M.
    CORRESPONDANCES EN METABOLISMES HORMONES DIABETES ET NUTRITION, 2024, 28 (02): : 50 - 50
  • [8] Gut microbial metabolite short-chain fatty acids and obesity
    Li, Xuan
    Shimizu, Yuuki
    Kimura, Ikuo
    BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH, 2017, 36 (04): : 135 - 140
  • [9] Microbial Regulation of Host Physiology by Short-chain Fatty Acids
    van der Hee, Bart
    Wells, Jerry M.
    TRENDS IN MICROBIOLOGY, 2021, 29 (08) : 700 - 712
  • [10] Highly Porous FexMnOy Microsphere as an Efficient Cathode Catalyst for Microbial Electrosynthesis of Volatile Fatty Acids from CO2
    Noori, Md Tabish
    Min, Booki
    CHEMELECTROCHEM, 2019, 6 (24): : 5973 - 5983