Instance transfer for tool remaining useful life prediction cross working conditions

被引:0
|
作者
Qiang, Biyao [1 ,2 ,3 ]
Shi, Kaining [1 ,2 ,3 ]
Ren, Junxue [1 ,2 ,3 ]
Shi, Yaoyao [1 ,2 ,3 ]
机构
[1] School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an,710072, China
[2] Key Laboratory of High Performance Manufacturing for Aero Engine, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an,710072, China
[3] Engineering Research Center of Advanced Manufacturing Technology for Aero Engine, Ministry of Education, Northwestern Polytechnical University, Xi’an,710072, China
关键词
Forecasting;
D O I
10.7527/S1000-6893.2023.29038
中图分类号
学科分类号
摘要
Accurate and reliable predictions of tool remaining useful life could reduce the rate of over-utilization and under-utilization of tools during machining,thereby maximizing the machining reliability and reducing production costs. Traditional machine learning methods for tool remaining useful life prediction rely heavily on the assumption that training and test data follow the same distribution,as well as extensive offline measurement data. However,in actual machining process,prediction accuracy of the traditional methods is reduced due to the variation in machining conditions and limited tool wear data. To address this problem,an Instance-based Transfer Learning framework is proposed to accurately predict the tool remaining useful life cross different working conditions. Firstly,a transfer learning algorithm is used to dynamically adjust the weights of all instances in multiple source domains,which aims to make full use of the source domain information that is highly correlated with the target data. Thus,the generalization ability of the model is improved,and the remaining tool life of the target working conditions could be well predicted with only a small amount of target domain data. Secondly,recurrent Gaussian process regression model is further developed as the base learner to improve the time series prediction capability of the transfer learning algorithm. The model limits the tool remaining useful life at adjacent moments through delayed feedback,while reducing the feature preparation time and the model complexity are reduced. The results indicate that the proposed framework can effectively improve the prediction accuracy of the tool remaining useful life cross different working conditions,and the prediction effectiveness also confirms the stability and reliability of the framework. © 2024 Chinese Society of Astronautics. All rights reserved.
引用
下载
收藏
相关论文
共 50 条
  • [1] Tool remaining useful life prediction method based on LSTM under variable working conditions
    Jing-Tao Zhou
    Xu Zhao
    Jing Gao
    The International Journal of Advanced Manufacturing Technology, 2019, 104 : 4715 - 4726
  • [2] Tool remaining useful life prediction method based on LSTM under variable working conditions
    Zhou, Jing-Tao
    Zhao, Xu
    Gao, Jing
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 104 (9-12): : 4715 - 4726
  • [3] A Novel Transfer Ensemble Learning Framework for Remaining Useful Life Prediction Under Multiple Working Conditions
    Tian, Jilun
    Jiang, Yuchen
    Zhang, Jiusi
    Wu, Shimeng
    Luo, Hao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [4] A Novel Remaining Useful Life Transfer Prediction Method of Rolling Bearings Based on Working Conditions Common Benchmark
    Li, Zhixuan
    Zhang, Kai
    Liu, Yongzhi
    Zou, Yisheng
    Ding, Guofu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] Prediction of Bearings Remaining Useful Life Across Working Conditions Based on Transfer Learning and Time Series Clustering
    Mao, Wentao
    He, Jianliang
    Sun, Bin
    Wang, Liyun
    IEEE ACCESS, 2021, 9 : 135285 - 135303
  • [6] Tool Remaining Useful Life Prediction Method Based on Multi-Sensor Fusion under Variable Working Conditions
    Huang, Qingqing
    Qian, Chunyan
    Li, Chao
    Han, Yan
    Zhang, Yan
    Xie, Haofei
    MACHINES, 2022, 10 (10)
  • [7] An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions
    Zhuang, Jichao
    Jia, Minping
    Zhao, Xiaoli
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 225
  • [8] Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions
    Cheng, Han
    Kong, Xianguang
    Wang, Qibin
    Ma, Hongbo
    Yang, Shengkang
    Chen, Gaige
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (02) : 587 - 613
  • [9] Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions
    Han Cheng
    Xianguang Kong
    Qibin Wang
    Hongbo Ma
    Shengkang Yang
    Gaige Chen
    Journal of Intelligent Manufacturing, 2023, 34 : 587 - 613
  • [10] Transfer Prediction Method of Bearing Remaining Useful Life Based on Deep Feature Evaluation under Different Working Conditions
    Liu, Yongzhi
    Zou, Yisheng
    Zhang, Kai
    Lazaridis, Pavlos
    SENSORS, 2023, 23 (19)