Joint Computation Offloading and Resource Allocation in Multi-edge Smart Communities with Personalized Federated Deep Reinforcement Learning

被引:0
|
作者
Chen Z. [1 ]
Xiong B. [1 ]
Chen X. [1 ]
Min G. [2 ]
Li J. [3 ]
机构
[1] College of Computer and Data Science, Fuzhou University, Fuzhou
[2] Department of Computer Science, Faculty of Environment, Science and Economy, University of Exeter, Exeter
[3] Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai
来源
IEEE Trans. Mob. Comput. | / 12卷 / 11604-11619期
关键词
computation offloading; deep reinforcement learning; Mobile edge computing; personalized federated learning; resource allocation;
D O I
10.1109/TMC.2024.3396511
中图分类号
学科分类号
摘要
Through deploying computing resources at the network edge, Mobile Edge Computing (MEC) alleviates the contradiction between the high requirements of intelligent mobile applications and the limited capacities of mobile End Devices (EDs) in smart communities. However, existing solutions of computation offloading and resource allocation commonly rely on prior knowledge or centralized decision-making, which cannot adapt to dynamic MEC environments with changeable system states and personalized user demands, resulting in degraded Quality-of-Service (QoS) and excessive system overheads. To address this important challenge, we propose a novel Personalized Federated deep Reinforcement learning based computation Offloading and resource Allocation method (PFR-OA). This innovative PFR-OA considers the personalized demands in smart communities when generating proper policies of computation offloading and resource allocation. To relieve the negative impact of local updates on global model convergence, we design a new proximal term to improve the manner of only optimizing local Q-value loss functions in classic reinforcement learning. Moreover, we develop a new partial-greedy based participant selection mechanism to reduce the complexity of federated aggregation while endowing sufficient exploration. Using real-world system settings and testbed, extensive experiments demonstrate the effectiveness of the PFR-OA. Compared to benchmark methods, the PFR-OA achieves better trade-offs between delay and energy consumption and higher task execution success rates under different scenarios. IEEE
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [1] Joint Multi-UAV Deployment and Resource Allocation based on Personalized Federated Deep Reinforcement Learning
    Xu, Xinyi
    Feng, Gang
    Qin, Shuang
    Liu, Yijing
    Sun, Yao
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5677 - 5682
  • [2] Computation Offloading and Resource Allocation in F-RANs: A Federated Deep Reinforcement Learning Approach
    Zhang, Lingling
    Jiang, Yanxiang
    Zheng, Fu-Chun
    Bennis, Mehdi
    You, Xiaohu
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 97 - 102
  • [3] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    SENSORS, 2022, 22 (13)
  • [4] Joint UAV Deployment and Resource Allocation: A Personalized Federated Deep Reinforcement Learning Approach
    Xu, Xinyi
    Feng, Gang
    Qin, Shuang
    Liu, Yijing
    Sun, Yao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4005 - 4018
  • [5] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [6] Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in Internet of Vehicles via Deep Reinforcement Learning
    Huang, Jiwei
    Wan, Jiangyuan
    Lv, Bofeng
    Ye, Qiang
    Chen, Ying
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2500 - 2511
  • [7] Joint Optimization for MEC Computation Offloading and Resource Allocation in IoV Based on Deep Reinforcement Learning
    Wang, Jian
    Wang, Yancong
    Ke, Hongchang
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [8] Federated Deep Reinforcement Learning for Joint AeBSs Deployment and Computation Offloading in Aerial Edge Computing Network
    Liu, Lei
    Zhao, Yikun
    Qi, Fei
    Zhou, Fanqin
    Xie, Weiliang
    He, Haoran
    Zheng, Hao
    ELECTRONICS, 2022, 11 (21)
  • [9] Joint Offloading and Resource Allocation for Multi-User Multi-Edge Collaborative Computing System
    Gao, Zihan
    Hao, Wanming
    Yang, Shouyi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 3383 - 3388
  • [10] Computation offloading and resource allocation strategy based on deep reinforcement learning
    Zeng F.
    Zhang Z.
    Chen Z.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (07): : 124 - 135