Hypertension Detection Through Speech Analysis Using Machine Learning-Based Approaches with the Identification of BP Sensitive Phonemes and Features

被引:0
|
作者
Malakar, Mousumi [1 ]
Keskar, Ravindra B. [1 ]
Zadgaonkar, Ajit [2 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Comp Sci & Engn, Nagpur, India
[2] Speech Markers Pvt Ltd, Pune, India
关键词
Hypertension; machine learning; phoneme analysis; optimal feature set; cepstral features;
D O I
10.1142/S0218213024500210
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are certain difficulties and unpleasant issues related to conventional diagnostic tools. These factors tilted the researchers toward finding an alternative non-invasive way of diagnosis. This alternate approach usually involves physiological and lifestyle-related data. The non-invasive tools are more convenient for common people as they are user-friendly and have no side effects. At the same time, they are cost-effective as well. The non-invasive diagnosis is also preferred by the people who live in places where medical facilities are not abundant. This study concentrates on detecting a person as hypertensive by analyzing certain parameters in speech using machine learning approaches. We identify some phonemes and features of speech that are more sensitive to capture the distortions in speech due to hypertension. Four different machine learning methods involving both classical and state-of-the-art methods in our study show the effectiveness of both types of machine learning methods in different dimensions. The study shows inspiring results in terms of prediction accuracy ( similar to 95%) as well as identifying a minimal set of hypertension-sensitive features. It is also found that when we combine the predictions of both classical and state-of-the-art methods, the result gives more reliable predictions.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] A Subset of Acoustic Features for Machine Learning-based and Statistical Approaches in Speech Emotion Recognition
    Costantini, Giovanni
    Cesarini, Valerio
    Casali, Daniele
    BIOSIGNALS: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 4: BIOSIGNALS, 2022, : 257 - 264
  • [2] Machine learning-based detection of alcohol intoxication through speech analysis: a comparative study of AI models
    Laptev, Pavel
    Demareva, Valeriia
    Litovkin, Sergey
    Kostuchenko, Evgeniy
    Shelupanov, Alexander
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025,
  • [3] Comparative Analysis of Features Based Machine Learning Approaches for Phishing Detection
    Jain, Ankit Kumar
    Gupta, B. B.
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 2125 - 2130
  • [4] EMPIRICAL COMPARISON AND ANALYSIS OF MACHINE LEARNING-BASED APPROACHES FOR DRUGGABLE PROTEIN IDENTIFICATION
    Shoombuatong, Watshara
    Schaduangrat, Nalini
    Nikom, Jaru
    EXCLI JOURNAL, 2023, 22 : 915 - 927
  • [5] Parkinson disease prediction using machine learning-based features from speech signal
    Linlin Yuan
    Yao Liu
    Hsuan-Ming Feng
    Service Oriented Computing and Applications, 2024, 18 : 101 - 107
  • [6] Parkinson disease prediction using machine learning-based features from speech signal
    Yuan, Linlin
    Liu, Yao
    Feng, Hsuan-Ming
    SERVICE ORIENTED COMPUTING AND APPLICATIONS, 2024, 18 (01) : 101 - 107
  • [7] Comparative Analysis of Machine Learning-Based Approaches for Anomaly Detection in Vehicular Data
    Demestichas, Konstantinos
    Alexakis, Theodoros
    Peppes, Nikolaos
    Adamopoulou, Evgenia
    VEHICLES, 2021, 3 (02): : 171 - 186
  • [8] Mispronunciation Detection Using Deep Convolutional Neural Network Features and Transfer Learning-Based Model for Arabic Phonemes
    Nazir, Faria
    Majeed, Muhammad Nadeem
    Ghazanfar, Mustansar Ali
    Maqsood, Muazzam
    IEEE ACCESS, 2019, 7 : 52589 - 52608
  • [9] Machine learning-based malware detection on Android devices using behavioral features
    Urmila, T. S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 4659 - 4664
  • [10] Acoustic features analysis for explainable machine learning-based audio spoofing detection
    Bisogni, Carmen
    Loia, Vincenzo
    Nappi, Michele
    Pero, Chiara
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249