Characterisation of the mode I interlaminar fracture toughness in multidirectional interfaces in a 3D-printed composite

被引:0
|
作者
Santos, Jonnathan Darío [1 ]
Blanco, Norbert [1 ]
Guerrero, José Manuel [1 ]
机构
[1] Analysis and Advanced Materials for the Structural Design (AMADE), Universitat de Girona, Avda. M. Aurèlia Capmany 61, Girona,17003, Spain
来源
Revista de Materiales Compuestos | 2024年 / 8卷 / 03期
关键词
Cantilever beams - Concretes - Crack propagation - Debonding - Enamels - Fracture - Fracture toughness - Laminating - Mortar;
D O I
暂无
中图分类号
学科分类号
摘要
Debonding between plies, or delamination, is a critical failure mechanism for laminated composite materials and has been analysed in several scientific investigation. Usually in real applications delamination initiates and propagates between interface layers with different reinforcement orientation. However, most of the experimental works are carried out using unidirectional specimens for determining the interlaminar fracture toughness because in laboratory conditions it is difficult to propagate the crack between multidirectional interface layers without other failure mechanisms that invalidate the test. Among these failure mechanisms, crack plane migration and crack branching at several planes are the most common. In this communication it will be detailed and analyzed the experimental characterization of the interlaminar fracture toughness in multidirectional interfaces of 3D-printed composite materials is detailed, including the manufacturing process of the Double Cantilever Beam (DCB) specimens that warranty crack propagation under pure mode I loading and without plane migration. Finally, a quantitative comparison is carried out between multidirectional interlaminar fracture toughness and the unidirectional one and a fractography analysis is reported. © 2024, Scipedia S.L.. All rights reserved.
引用
收藏
相关论文
共 50 条
  • [1] Numerical and Experimental Analysis of the Mode I Interlaminar Fracture Toughness in Multidirectional 3D-Printed Thermoplastic Composites Reinforced with Continuous Carbon Fiber
    Santos, Jonnathan D.
    Guerrero, Jose M.
    Blanco, Norbert
    Fajardo, Jorge I.
    Paltan, Cesar A.
    POLYMERS, 2023, 15 (10)
  • [2] Mode I interlaminar fracture toughness of composite
    Jiao, Guiqiong
    Gao, Jian
    Deng, Qiang
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 1994, 11 (01): : 113 - 118
  • [3] Fracture toughness determination and mechanism for mode-I interlaminar failure of 3D-printed carbon-Kevlar composites
    Dang, Zhilong
    Cao, Junchao
    Pagani, Alfonso
    Zhang, Chao
    COMPOSITES COMMUNICATIONS, 2023, 39
  • [4] Interlaminar fracture toughness of a graphite/epoxy multidirectional composite
    Yang, Z
    Sun, CT
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000, 122 (04): : 428 - 433
  • [5] Interlaminar and translaminar fracture toughness of 3D-printed continuous fiber reinforced composites: A review and prospect
    Xiang, Jiangyang
    Cheng, Ping
    Wang, Kui
    Wu, Yaxian
    Rao, Yanni
    Peng, Yong
    POLYMER COMPOSITES, 2024, 45 (05) : 3883 - 3900
  • [6] Tearing mode interlaminar fracture toughness of composite materials
    Hwang, SF
    Hu, CL
    POLYMER COMPOSITES, 2001, 22 (01) : 57 - 64
  • [7] Mode I interlaminar fracture of carbon/epoxy multidirectional laminates
    Pereira, AB
    de Morais, AB
    COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (13-14) : 2261 - 2270
  • [8] Mode I interlaminar fracture toughness of stitched laminates
    Wang, R
    Wang, GF
    Guo, XF
    Zhang, M
    JOURNAL OF INORGANIC MATERIALS, 2004, 19 (05) : 1123 - 1128
  • [9] Interlaminar fracture toughness of a quasi 3D braided composite
    Wente, Tony
    Mao, Xinyu
    Zeng, Danielle
    Torab, Homa
    Dahl, Jeff
    Xiao, Xinran
    JOURNAL OF COMPOSITE MATERIALS, 2021, 55 (25) : 3729 - 3739
  • [10] Determination of pure mode-I fracture toughness of multidirectional composite DCB specimens
    Jia, Ruodi
    Zhao, Libin
    Curti, Remi
    Gong, Xiaojing
    ENGINEERING FRACTURE MECHANICS, 2021, 252