Comparison of Geographically Weighted Regression (GWR) and Mixed Geographically Weighted Regression (MGWR) Models on the Poverty Levels in Central Java in 2023

被引:0
|
作者
Alya, Najma Attaqiya [1 ]
Almaulidiyah, Qothrotunnidha [1 ]
Farouk, Bailey Reshad [1 ]
Rantini, Dwi [2 ]
Ramadan, Arip [3 ]
Othman, Fazidah [4 ]
机构
[1] Engineering Department, Data Science Technology Study Program, Universitas Airlangga, Indonesia
[2] Engineering Department, Data Science Technology Study Program, Faculty of Advanced Technology and Multi-discipline, Universitas Airlangga, Indonesia
[3] Information System Study Program, Department of Industrial and System Engineering, Telkom University, Surabaya Campus, Indonesia
[4] Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Malaysia
关键词
Logistic regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2746 / 2757
相关论文
共 50 条
  • [1] The Model of Mixed Geographically Weighted Regression (MGWR) for Poverty Rate in Central Java']Java
    Darsyah, M. Y.
    Wasono, R.
    Agustina, M. F.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 114 - 121
  • [2] Multiscale Geographically Weighted Regression (MGWR)
    Fotheringham, A. Stewart
    Yang, Wenbai
    Kang, Wei
    [J]. ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 2017, 107 (06) : 1247 - 1265
  • [3] Modeling the Amount of Poverty in Central Java using Geographically Weighted Regression
    Mursito, Theresia Prabandari Ayu Pawestri
    Berlianto, Michael Christian
    An'amtaadinindra, Yoosove
    Edbert, Ivan Sebastian
    Ohyver, Margaretha
    [J]. 2022 International Conference on Science and Technology, ICOSTECH 2022, 2022,
  • [4] On the estimation and testing of mixed geographically weighted regression models
    Wei, Chuan-Hua
    Qi, Fei
    [J]. ECONOMIC MODELLING, 2012, 29 (06) : 2615 - 2620
  • [5] Geographically weighted regression model on poverty indicator
    Slamet, I.
    Nugroho, N. F. T. A.
    Muslich
    [J]. FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [6] Review on Geographically Weighted Regression (GWR) approach in spatial analysis
    Sulekan, Ayuna
    Jamaludin, Shariffah Suhaila Syed
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2020, 16 (02): : 173 - 177
  • [7] EXPLANATORY ANALYSES OF WORK TRIP GENERATION USING MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR)
    Shahri, M.
    Ghannadi, M. A.
    [J]. ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 707 - 714
  • [8] Testing spatial heteroscedasticity in mixed geographically weighted regression models
    Shen, Si-Lian
    Yan, Wen-Lu
    Cui, Jian-Ling
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024,
  • [9] Efficient estimation of heteroscedastic mixed geographically weighted regression models
    Mei, Chang-Lin
    Chen, Feng
    Wang, Wen-Tao
    Yang, Peng-Cheng
    Shen, Si-Lian
    [J]. ANNALS OF REGIONAL SCIENCE, 2021, 66 (01): : 185 - 206
  • [10] Efficient estimation of heteroscedastic mixed geographically weighted regression models
    Chang-Lin Mei
    Feng Chen
    Wen-Tao Wang
    Peng-Cheng Yang
    Si-Lian Shen
    [J]. The Annals of Regional Science, 2021, 66 : 185 - 206