Revealing Water Storage Changes and Ecological Water Conveyance Benefits in the Tarim River Basin over the Past 20 Years Based on GRACE/GRACE-FO

被引:0
|
作者
Sun, Weicheng [1 ]
Zhang, Xingfu [1 ]
机构
[1] School of Civil Transportation Engineering, Guangdong University of Technology, Guangzhou,510006, China
基金
中国国家自然科学基金;
关键词
Abiotic - Evapotranspiration - Groundwater resources;
D O I
10.3390/rs16234355
中图分类号
学科分类号
摘要
As China’s largest inland river basin and one of the world’s most arid regions, the Tarim River Basin is home to an extremely fragile ecological environment. Therefore, monitoring the water storage changes is critical for enhancing water resources management and improving hydrological policies to ensure sustainable development. This study reveals the spatiotemporal changes of water storage and its driving factors in the Tarim River Basin from 2002 to 2022, utilizing data from GRACE, GRACE-FO (GFO), GLDAS, the glacier model, and measured hydrological data. In addition, we validate GRACE/GFO data as a novel resource that can monitor the ecological water conveyance (EWC) benefits effectively in the lower reaches of the basin. The results reveal that (1) the northern Tarim River Basin has experienced a significant decline in terrestrial water storage (TWS), with an overall deficit that appears to have accelerated in recent years. From April 2002 to December 2009, the groundwater storage (GWS) anomaly accounted for 87.5% of the TWS anomaly, while from January 2010 to January 2020, the ice water storage (IWS) anomaly contributed 57.1% to the TWS anomaly. (2) The TWS changes in the Tarim River Basin are primarily attributed to the changes of GWS and IWS, and they have the highest correlation with precipitation and evapotranspiration, with grey relation analysis (GRA) coefficients of 0.74 and 0.68, respectively, while the human factors mainly affect GWS, with an average GRA coefficient of 0.64. (3) In assessing ecological water conveyance (EWC) benefits, the GRACE/GFO-derived TWS anomaly in the lower reaches of the Tarim River exhibits a good correspondence with the changes of EWC, NDVI, and groundwater levels. © 2024 by the authors.
引用
收藏
相关论文
共 50 条
  • [1] Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions
    Zhu, Yu
    Liu, Shiyin
    Yi, Ying
    Xie, Fuming
    Grunwald, Richard
    Miao, Wenfei
    Wu, Kunpeng
    Qi, Miaomiao
    Gao, Yongpeng
    Singh, Dharmaveer
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 799
  • [2] Comparison of Terrestrial Water Storage Changes Derived from GRACE/GRACE-FO and Swarm: A Case Study in the Amazon River Basin
    Cui, Lilu
    Song, Zhe
    Luo, Zhicai
    Zhong, Bo
    Wang, Xiaolong
    Zou, Zhengbo
    WATER, 2020, 12 (11) : 1 - 18
  • [3] Twentieth and Twenty-First Century Water Storage Changes in the Nile River Basin from GRACE/GRACE-FO and Modeling
    Hasan, Emad
    Tarhule, Aondover
    Kirstetter, Pierre-Emmanuel
    REMOTE SENSING, 2021, 13 (05) : 1 - 30
  • [4] Estimating Monthly River Discharges from GRACE/GRACE-FO Terrestrial Water Storage Anomalies
    Duvvuri, Bhavya
    Beighley, Edward
    REMOTE SENSING, 2023, 15 (18)
  • [5] Reconstructing gap data between GRACE and GRACE-FO based on multi-layer perceptron and analyzing terrestrial water storage changes in the Yellow River basin
    Shi Tong
    Liu Xin
    Mu DaPeng
    Li ChengMing
    Guo JinYun
    Xing YunPeng
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (07): : 2448 - 2463
  • [6] Reconstructing gap data between GRACE and GRACE-FO based on multi-layer perceptron and analyzing terrestrial water storage changes in the Yellow River basin
    Shi, Tong
    Liu, Xin
    Mu, DaPeng
    Li, ChengMing
    Guo, JinYun
    Xing, YunPeng
    Acta Geophysica Sinica, 2022, 65 (07): : 2448 - 2463
  • [7] Characterization of groundwater storage changes in the Amazon River Basin based on downscaling of GRACE/GRACE-FO data with machine learning models
    Satizabal-Alarcon, Diego Alejandro
    Suhogusoff, Alexandra
    Ferrari, Luiz Carlos
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [8] Investigating terrestrial water storage changes in Southwest China by integrating GNSS and GRACE/GRACE-FO observations
    Yang, Xinghai
    Yuan, Linguo
    Jiang, Zhongshan
    Tang, Miao
    Feng, Xianjie
    Li, Changhai
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 48
  • [9] The Sea Level Fingerprints of Global Terrestrial Water Storage Changes Detected by GRACE and GRACE-FO Data
    Sun, Jianwei
    Wang, Linsong
    Peng, Zhenran
    Fu, Zhenyan
    Chen, Chao
    PURE AND APPLIED GEOPHYSICS, 2022, 179 (09) : 3493 - 3509
  • [10] The Sea Level Fingerprints of Global Terrestrial Water Storage Changes Detected by GRACE and GRACE-FO Data
    Jianwei Sun
    Linsong Wang
    Zhenran Peng
    Zhenyan Fu
    Chao Chen
    Pure and Applied Geophysics, 2022, 179 : 3493 - 3509