Machine learning for battery quality classification and lifetime prediction using formation data

被引:0
|
作者
Zou, Jiayu [1 ,2 ,5 ]
Gao, Yingbo [3 ]
Frieges, Moritz H. [4 ]
Börner, Martin F. [1 ,2 ,5 ]
Kampker, Achim [4 ]
Li, Weihan [1 ,2 ,5 ]
机构
[1] Chair for Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Campus-Boulevard 89, Aachen,52074, Germany
[2] Center for Ageing, Reliability and Lifetime Prediction of Electrochemical and Power Electronic Systems (CARL), RWTH Aachen University, Campus-Boulevard 89, Aachen, Germany
[3] Department of Computer Science, RWTH Aachen University, Aachen,52056, Germany
[4] Chair of Production Engineering of E-Mobility Components (PEM), RWTH Aachen University, Bohr 12, Aachen,52072, Germany
[5] Juelich Aachen Research Alliance, JARA-Energy, Germany
来源
Energy and AI | 2024年 / 18卷
关键词
All Open Access; Gold;
D O I
10.1016/j.egyai.2024.100451
中图分类号
学科分类号
摘要
Prediction models
引用
收藏
相关论文
共 50 条
  • [1] Early Quality Classification and Prediction of Battery Cycle Life in Production Using Machine Learning
    Stock, Sandro
    Pohlmann, Sebastian
    Guenter, Florian J.
    Hille, Lucas
    Hagemeister, Jan
    Reinhart, Gunther
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [2] A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data
    Zhang, Yizhou
    Wik, Torsten
    Bergstrom, John
    Pecht, Michael
    Zou, Changfu
    JOURNAL OF POWER SOURCES, 2022, 526
  • [3] A prediction method for voltage and lifetime of lead-acid battery by using machine learning
    Wang, Zhi-Hao
    Hendrick
    Horng, Gwo-iun
    Wu, Hsin-Te
    Jong, Gwo-Jia
    ENERGY EXPLORATION & EXPLOITATION, 2020, 38 (01) : 310 - 329
  • [4] Feature engineering for machine learning enabled early prediction of battery lifetime
    Paulson, Noah H.
    Kubal, Joseph
    Ward, Logan
    Saxena, Saurabh
    Lu, Wenquan
    Babinec, Susan J.
    JOURNAL OF POWER SOURCES, 2022, 527
  • [5] Early prediction of battery lifetime via a machine learning based framework
    Fei, Zicheng
    Yang, Fangfang
    Tsui, Kwok-Leung
    Li, Lishuai
    Zhang, Zijun
    ENERGY, 2021, 225
  • [6] PM 2.5 Prediction & Air Quality Classification Using Machine Learning
    Soontornpipit, Pichitpong
    Lekawat, Lertsak
    Tritham, Chatchai
    Tritham, Chattabhorn
    Pongpaibool, Pornanong
    Prasertsuk, Narachata
    Jirakitpuwapat, Wachirapong
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (02): : 441 - 452
  • [7] Marine water quality index classification and prediction using machine learning framework
    Karuppanan K.
    International Journal of Water, 2022, 15 (01) : 21 - 38
  • [8] Cloud-based in-situ battery life prediction and classification using machine learning
    Zhang, Yongzhi
    Zhao, Mingyuan
    ENERGY STORAGE MATERIALS, 2023, 57 : 346 - 359
  • [9] Data Scientist Job Change Prediction Using Machine Learning Classification Techniques
    Kyalkond, Sameer A.
    Sanjay, V. Manikanta
    Athreya, H. Manoj
    Aithal, Sudhanva Suresh
    Rajashekar, Vishal
    Kushal, B. H.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 211 - 219
  • [10] A review on prediction of diabetes using machine learning and data mining classification techniques
    Pati, Abhilash
    Parhi, Manoranjan
    Pattanayak, Binod Kumar
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 41 (01) : 83 - 109