This paper presents a proposed fault-tolerant control strategy for Switched Reluctance Motor (SRM) drives, utilizing cascaded current and pulse width modulation (PWM) control mechanisms with commutation angle variation. The study systematically evaluates the mechanical performance of SRM drives by regulating voltage and current to achieve robust dynamic response under various fault conditions. Optimal commutation angles are identified to enhance operational efficiency and balance performance under fault scenarios. The comprehensive simulations use a 4 kW, 4 <inline-formula><tex-math notation="LaTeX">$phi$</tex-math></inline-formula>, 8/6 SRM model in MATLAB/Simulink; further, real-time experiments are conducted using FPGA-based modelling with a Controller Hardware-in-Loop (CHIL), setup on the OPAL-RT 4510 platform. The proposed control technique demonstrates high fault tolerance and reliable mechanical performance, making it suitable for variable-speed drive applications. The findings underscore the potential of the proposed control strategy to ensure the robust operation of SRM drives in practical implementations, highlighting its significance for enhancing the reliability and efficiency of electric drive systems. IEEE