On Study of Multiset Dimension in Fuzzy Zero Divisor Graphs Associated with Commutative Rings

被引:0
|
作者
Ali, Nasir [1 ,2 ]
Siddiqui, Hafiz Muhammad Afzal [1 ]
Qureshi, Muhammad Imran [2 ]
Abdalla, Manal Elzain Mohamed [3 ]
Abd EL-Gawaad, N. S. [4 ]
Tolasa, Fikadu Tesgera [5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Vehari Campus, Vehari 61100, Pakistan
[3] King Khalid Univ, Appl Coll, Abha 62529, Saudi Arabia
[4] King Khalid Univ, Appl Coll, Muhayil Asir, Abha 62529, Saudi Arabia
[5] Dambi Dollo Univ, Oromia 57555, Ethiopia
关键词
Algebraic structures; Fuzzy zero divisor graph (FZDG); Multiset dimension; Zero divisor graph; Resolvability;
D O I
10.1007/s44196-024-00706-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the concept of fuzzy zero divisor graph (FZDG) for a commutative ring R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} denoted by Gamma fR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{f}\left(\text{R}\right)$$\end{document}. We explore the multiset dimension (Mdim), a new variant of the metric dimension (MD), specifically in the context of FZDGs. To illustrate our findings, we analyze the FZDG for the ring Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}_{n}$$\end{document} of integers modulon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} of integers modulo n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, denoted by Gamma fZn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{f}\left({\mathbb{Z}}_{n}\right).$$\end{document} We compute the multiset dimension for all possible values of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} for the FZDG Gamma fZn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_{f}\left({\mathbb{Z}}_{n}\right)$$\end{document}, providing significant theoretical insights into its structure. Our results not only advance the understanding of FZDGs and their multiset dimensions but also have practical implications across various fields, including cryptography, coding theory, and network analysis. This study lays the groundwork for future research on the application of fuzzy concepts in graph theory and algebraic structures.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Metric and upper dimension of zero divisor graphs associated to commutative rings
    Pirzada, S.
    Aijaz, M.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (01) : 84 - 101
  • [2] A generalization of zero divisor graphs associated to commutative rings
    Afkhami, M.
    Erfanian, A.
    Khashyarmanesh, K.
    Moosavi, N. Vaez
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (01):
  • [3] A generalization of zero divisor graphs associated to commutative rings
    M. Afkhami
    A. Erfanian
    K. Khashyarmanesh
    N. Vaez Moosavi
    Proceedings - Mathematical Sciences, 2018, 128
  • [4] Upper dimension and bases of zero-divisor graphs of commutative rings
    Pirzada, S.
    Aijaz, M.
    Redmond, S. P.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 168 - 173
  • [5] ON THE LINE GRAPHS ASSOCIATED TO THE ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS
    Chiang-Hsieh, Hung-Jen
    Lee, Pei-Feng
    Wang, Hsin-Ju
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 61 - 72
  • [6] The embedding of line graphs associated to the zero-divisor graphs of commutative rings
    Hung-Jen Chiang-Hsieh
    Pei-Feng Lee
    Hsin-Ju Wang
    Israel Journal of Mathematics, 2010, 180 : 193 - 222
  • [7] THE EMBEDDING OF LINE GRAPHS ASSOCIATED TO THE ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS
    Chiang-Hsieh, Hung-Jen
    Lee, Pei-Feng
    Wang, Hsin-Ju
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 180 (01) : 193 - 222
  • [8] On locating numbers and codes of zero divisor graphs associated with commutative rings
    Raja, Rameez
    Pirzada, S.
    Redmond, Shane
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [9] Fault-tolerant metric dimension of zero-divisor graphs of commutative rings
    Sharma, Sahil
    Bhat, Vijay Kumar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 24 - 30
  • [10] COMMUTATIVE RINGS WITH TOROIDAL ZERO-DIVISOR GRAPHS
    Chiang-Hsieh, Hung-Jen
    Smith, Neal O.
    Wang, Hsin-Ju
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01): : 1 - 31