Effect of Asymmetric Rolling on the Structure and Properties of Cu-Cr-Zr Alloys

被引:0
|
作者
Aksenov, D. A. [1 ]
Raab, G. I. [2 ]
Raab, A. G. [1 ]
Pesin, A. M. [2 ]
Yu, H. [3 ]
机构
[1] Russian Acad Sci, Ufa Fed Res Ctr, Inst Mol & Crystal Phys, Ufa 450075, Russia
[2] Nosov Magnitogorsk State Tech Univ, Magnitogorsk 455000, Russia
[3] Cent South Univ, Coll Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
基金
俄罗斯科学基金会;
关键词
copper alloys; asymmetric rolling; ultrafine-grained structures; strength; electrical conductivity; ELECTRICAL-CONDUCTIVITY; GRAIN-REFINEMENT; STRENGTH; COLD; PRECIPITATION; DUCTILITY;
D O I
10.1134/S1029959924060067
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Asymmetric rolling is a high-tech method based on the principles of severe plastic deformation. In the present paper, it is shown that Cu-0.8Cr-0.1Zr alloy is highly strengthened during asymmetric rolling due to structure refinement to an ultrafine-grained state. For example, in only one pass, at the accumulated strain 0.94 +/- 0.20, the strength increases from 265 to 425 MPa. During the deformation process, the structure becomes refined, with the average size of fragments reaching 235 +/- 90 nm. Structure heterogeneity is also observed in the cross section of a sample, which is associated with different rotation speeds of the rolls. The shape of grains in the central zone of samples corresponds to the state after conventional symmetric rolling. However, in the zone adjacent to the roll rotating at a higher speed, mechanical texture of grains is similar to that after shear. Subsequent aging of Cu-0.8Cr-0.1Zr alloy at 450 degrees C makes it possible to achieve the ultimate strength 560 MPa and electrical conductivity 82% IACS, which exceeds the characteristics of the strengthened steel by 10-15%. The analysis of contributions to strengthening during asymmetric rolling reveals that the main contribution comes from the refinement of the grain structure to an ultrafine-grained state, which amounts to 58%. The fractions of the dislocation and dispersion contributions comprise 15 and 20%, respectively. Compared to conventional rolling, as well as other deformation methods that provide the same level of accumulated strain and strengthening in one cycle, such as equal channel angular pressing-conform, asymmetric rolling is the most promising due to its simpler process scheme.
引用
收藏
页码:687 / 697
页数:11
相关论文
共 50 条
  • [1] Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys
    Chen Jinshui
    Yang Bin
    Wang Junfeng
    Xiao Xiangpeng
    Chen Huiming
    Wang Hang
    MATERIALS RESEARCH EXPRESS, 2018, 5 (02):
  • [2] Solidification Structure of Cu-Cr and Cu-Cr-Zr Alloys
    Tanaka, Shinji
    Mizusawa, Mamoru
    Miyabe, Yoshiharu
    Hagisawa, Takehito
    Kajikawa, Koji
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2010, 74 (06) : 356 - 364
  • [3] Effect of rolling and aging treatment on microstructure and properties for Cu-Cr-Zr alloy
    Liu H.-B.
    Zheng Y.-H.
    La P.-Q.
    Shen J.
    Ding Y.-L.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2020, 30 (09): : 2075 - 2083
  • [4] Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy
    Fu, Huadong
    Xu, Sheng
    Li, Wei
    Xie, Jianxin
    Zhao, Hongbin
    Pan, Zhijun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 700 : 107 - 115
  • [5] Effect of chromium content on precipitation in Cu-Cr-Zr alloys
    Bodyakova, Anna
    Mishnev, Roman
    Belyakov, Andrey
    Kaibyshev, Rustam
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (27) : 13043 - 13059
  • [6] Effect of Cr Content and Heat Treatment on Microstructures and Mechanical Properties of Cu-Cr-Zr Alloys
    Wang, Qing-juan
    Zhou, Xiao
    Zhang, Xiao-wen
    Liang, Bo
    Du, Zhong-ze
    PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ELECTRONIC TECHNOLOGY, 2015, 6 : 140 - 144
  • [7] Texture of deformed Cu-Cr-Zr alloys
    Li, Huaqing
    Xie, Shuisheng
    Mi, Xujun
    Wu, Pengyue
    Li, Yanfeng
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2008, 15 (04): : 434 - 439
  • [8] Texture of deformed Cu-Cr-Zr alloys
    Huaqing Li1
    Journal of University of Science and Technology Beijing, 2008, (04) : 434 - 439
  • [9] Deformation structure of water atomised and extruded Cu-Cr-Zr alloys
    Correia, J.B.
    Davies, H.A.
    Sellars, C.M.
    Mechanical and corrosion properties. Series A, Key engineering materials, 1994, 97-98 : 43 - 48
  • [10] Zr-containing precipitate evolution and its effect on the mechanical properties of Cu-Cr-Zr alloys
    Du, Yibo
    Zhou, Yanjun
    Song, Kexing
    Huang, Tao
    Hui, David
    Liu, Haitao
    Cheng, Chu
    Yang, Jingzhao
    Niu, Liye
    Guo, Huiwen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 1451 - 1458