Adaptive system for quality grading of different tobacco leaves

被引:0
|
作者
Cai, Jianrong
Fang, Ruming
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:99 / 103
相关论文
共 50 条
  • [1] A trainable grading system for tobacco leaves
    Zhang, J
    Sokhansanj, S
    Wu, S
    Fang, R
    Yang, W
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 1997, 16 (03) : 231 - 244
  • [2] Quality grading and classification of tobacco leaves based on deep learning
    Li, Xudong
    Jin, Xin
    Guo, Fei
    Hu, Hua
    Hu, Wu
    [J]. Journal of Biotech Research, 2024, 16 : 247 - 257
  • [3] Grading of flue-cured tobacco leaves based on FCE
    Zhang, Fan
    Cheng, Yunzhi
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 539 - 542
  • [4] QUALITY GRADING SYSTEM
    SEAWALL, F
    [J]. COLLEGE AND UNIVERSITY, 1967, 43 (01): : 47 - 51
  • [5] Min-max representation of features for grading cured tobacco leaves
    Guru, D. S.
    Mallikarjuna, P. B.
    Manjunath, S.
    Shenoi, M. M.
    [J]. STATISTICS AND APPLICATIONS, 2011, 9 (1-2): : 15 - 29
  • [7] Grading for tobacco leaf quality based on sparse representation
    Xiang, Jinhai
    Yang, Shen
    Fan, Heng
    Zhang, Ying
    Zhai, Ruifang
    Peng, Hui
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (11): : 287 - 292
  • [8] QUALITY GRADING SYSTEM - COMMENT
    CARLSSON, A
    [J]. COLLEGE AND UNIVERSITY, 1968, 44 (01): : 13 - 16
  • [9] Intelligent Grading of Tobacco Leaves Using an Improved Bilinear Convolutional Neural Network
    Lu, Mengyao
    Wang, Cong
    Wu, Wenbiao
    Zhu, Dinglian
    Zhou, Qiang
    Wang, Zhiyong
    Chen, Tian'en
    Jiang, Shuwen
    Chen, Dong
    [J]. IEEE ACCESS, 2023, 11 : 68153 - 68170
  • [10] Grading Tobacco Leaves Based on Image Processing and Generalized Regression Neural Network
    Liu, Jianjun
    Shen, Jinyuan
    Shen, Zhenyu
    Liu, Runjie
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL, AUTOMATIC DETECTION AND HIGH-END EQUIPMENT (ICADE), 2012, : 89 - 93