Clay Blending and Homogenization.

被引:0
|
作者
Fiederling-Kapteinat, Hans-Georg
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:274 / 277
相关论文
共 50 条
  • [1] PROBLEM OF SIMPLEST HOMOGENIZATION.
    Raevskaya, V.E.
    1600, (61):
  • [2] CIRCULAR BLENDING BED FOR STORAGE AND HOMOGENIZATION OF CLAY
    TOPSCH, N
    ZEMENT-KALK-GIPS, 1991, 44 (04): : 153 - 156
  • [3] Connectedness and homogenization. Examples of fractal conductivity
    Zhikov, VV
    SBORNIK MATHEMATICS, 1996, 187 (7-8) : 1109 - 1147
  • [4] Multicontinuum homogenization. General theory and applications
    Chung, E.
    Efendiev, Y.
    Galvis, J.
    Leung, W. T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 510
  • [5] Evaluation of the Efficiency of Machines for Multicomponent Homogenization.
    Trojka, Drahomir
    1600, (27):
  • [6] AN EMBEDDED CORRECTOR PROBLEM FOR HOMOGENIZATION. PART I: THEORY
    Cances, Eric
    Ehrlacher, Virginie
    Legoll, Frederic
    Stamm, Benjamin
    Xiang, Shuyang
    MULTISCALE MODELING & SIMULATION, 2020, 18 (03): : 1179 - 1209
  • [7] Worst scenario method in homogenization. Linear case
    Nechvátal L.
    Applications of Mathematics, 2006, 51 (3) : 263 - 294
  • [8] Cell-to-muscle homogenization. Application to a constitutive law for the myocardium
    Caillerie, D
    Mourad, A
    Raoult, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (04): : 681 - 698
  • [9] Non-Markovian quadratic forms obtained by homogenization.
    Briane, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (02): : 323 - 337
  • [10] An embedded corrector problem for homogenization. Part II: Algorithms and discretization
    Cances, Eric
    Ehrlacher, Virginie
    Legoll, Frederic
    Stamm, Benjamin
    Xiang, Shuyang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407