Maximal elements and equilibria for condensing correspondences

被引:0
|
作者
CERMSEM, Université de Paris 1, 106-112 Bd de l'Hopital, 75013 Paris, France [1 ]
不详 [2 ]
机构
来源
关键词
Approximation theory - Geometry - Theorem proving - Topology - Vectors;
D O I
暂无
中图分类号
学科分类号
摘要
Using a generalized notion of the measure of noncompactness, the existence of maximal elements for condensing preferences defined on a noncompact subset of Hausdorff locally convex topological vector space is proven. As an application, an equilibrium existence result is presented for noncompact generalized games with infinitely many agents, KF-majorized preferences and a condensing condition on the constraint correspondences.
引用
收藏
相关论文
共 50 条