Suppression of chaos by cyclic parametric excitation in two-dimensional maps

被引:0
|
作者
Loskutov, A. Y.
Rybalko, S. D.
Feudel, U.
Kurths, J.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Suppression of chaos by cyclic parametric excitation in two-dimensional maps
    Loskutov, AY
    Rybalko, SD
    Feudel, U
    Kurths, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 5759 - 5771
  • [2] Periodicity and Chaos Amidst Twisting and Folding in Two-Dimensional Maps
    Garst, Swier
    Sterk, Alef E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (04):
  • [3] Intrinsic noise and two-dimensional maps: Quasicycles, quasiperiodicity, and chaos
    Parra-Rojas, Cesar
    Challenger, Joseph D.
    Fanelli, Duccio
    McKane, Alan J.
    PHYSICAL REVIEW E, 2014, 90 (03):
  • [4] Suppression of chaos in a nonlinear oscillator with parametric and external excitation
    Belhaq, Mohamed
    Houssni, Mohamed
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 5147 - 5155
  • [5] Suppression of chaos in a nonlinear oscillator with parametric and external excitation
    Belhaq, M
    Houssni, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 5147 - 5155
  • [6] Wave Manipulation of Two-Dimensional Periodic Lattice by Parametric Excitation
    Yang, Xiao-Dong
    Cui, Qing-Dian
    Zhang, Wei
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2020, 87 (01):
  • [7] Measuring transient chaos in nonlinear one- and two-dimensional maps
    Buszko, K
    Stefánski, K
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 630 - 646
  • [8] Two-dimensional maps at the edge of chaos: Numerical results for the Henon map
    Tirnakli, U
    PHYSICAL REVIEW E, 2002, 66 (06): : 4 - 066212
  • [9] Parametric resonance of a two-dimensional system under bounded noise excitation
    Xie, WC
    So, RMC
    NONLINEAR DYNAMICS, 2004, 36 (2-4) : 437 - 453
  • [10] Parametric Resonance of a Two-Dimensional System Under Bounded Noise Excitation
    Wei-Chau Xie
    Ronald M.C. So
    Nonlinear Dynamics, 2004, 36 : 437 - 453