POWER SYSTEM STEADY STATE MATHEMATICAL MODELS.

被引:0
|
作者
Sovalov, S.A.
Barinov, V.A.
机构
来源
Electric Technology, USSR | 1980年 / 04期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Considers flow distribution models and general steady-state equations with regard to stationary state equations of synchronous and asynchronous machines and systems for automatic regulation of generator excitation and speed. Conditions for applicability of the models are elucidated. Regions of feasibility of states corresponding to mathematical models are inter-related with and without bus-bars of constant voltage and frequency present. Use of fictitious models is confined to states belonging simultaneously to a feasible state of a real model and to an analytic stability region of the fictitious model.
引用
收藏
页码:1 / 17
相关论文
共 50 条
  • [1] POWER SYSTEM STEADY-STATE MATHEMATICAL-MODELS
    SOVALOV, SA
    BARINOV, VA
    [J]. ELECTRICAL TECHNOLOGY, 1980, (04): : 1 - 17
  • [2] Mathematical Models of a dc Transmission System for the Study of Steady-state Stability of Power Systems.
    Sykulska, Elzbieta
    [J]. Zeszyty Naukowe Politechniki Lodzkiej, Elektryka, 1981, (69): : 177 - 185
  • [3] Steady-state cracks in viscoelastic lattice models. II
    Kessler, David A.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (03): : 2348 - 2360
  • [4] Steady-state cracks in viscoelastic lattice models. II
    Kessler, DA
    [J]. PHYSICAL REVIEW E, 2000, 61 (03) : 2348 - 2360
  • [5] OPTIMIZATION OF POWER PLANT CONTROL BY CONSISTENT APPLICATION OF MATHEMATICAL MODELS.
    Lausterer, G.K.
    [J]. Process Automation-pa, 1983, (01): : 8 - 17
  • [6] Advanced steady-state models of UPFC for power system studies
    L'Abbate, A
    Trovato, M
    Becker, C
    Handschin, E
    [J]. 2002 IEEE POWER ENGINEERING SOCIETY SUMMER MEETING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 449 - 454
  • [7] ON FINITE AND SEMI-INFINITE STEADY STATE TUBULAR REACTOR MODELS.
    Chang, K.S.
    Bergevin, K.
    Godsalve, E.W.
    [J]. 1600, (15):
  • [8] Biological rhythms and mathematical models.
    Oda, GA
    Marques, MD
    [J]. BIOFUTUR, 2003, (231) : 33 - 36
  • [9] ELECTRIC POWER SYSTEM PLANNING: THE VALUE OF ENERGY SYSTEM MODELS.
    Baughman, Martin L.
    Vanston, Lawrence K.
    [J]. 1979,
  • [10] The explanatory power of models.
    Courgeau, D
    [J]. POPULATION STUDIES-A JOURNAL OF DEMOGRAPHY, 2003, 57 (03): : 372 - 374