A neural-network compensator with fuzzy robustification terms for improved design of adaptive control of robot manipulators

被引:0
|
作者
Fung, Y.H. [1 ]
Tso, S.K. [1 ]
机构
[1] Ctr. Intelligent Des., Automat./Mfg., City University of Hong Kong, Hong Kong, Hong Kong
关键词
Adaptive control systems - Algorithms - Fuzzy sets - Gravitational effects - Manipulators - Radial basis function networks - Robot applications - Robustness (control systems);
D O I
暂无
中图分类号
学科分类号
摘要
A sum radial-basis-function neural-network (NN) compensator with computed-torque control and novel weight-tuning algorithms is proposed to improve tracking performance and to account for structured/unstructured uncertainties of robot manipulators. The proposed weight-tuning algorithms do not require the initial NN weights to be small. The bounds of NN weights are guaranteed to be convergent in the sense of Lyapunov. The effectiveness of the proposed algorithm is demonstrated using a laboratory robot manipulator.
引用
收藏
页码:119 / 124
相关论文
共 50 条
  • [1] Design and implementation of an adaptive neural-network compensator for control systems
    Choi, YK
    Lee, MJ
    Kim, S
    Kay, YC
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (02) : 416 - 423
  • [2] Adaptive trajectory tracking neural network control with robust compensator for robot manipulators
    Van Cuong, Pham
    Nan, Wang Yao
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (02): : 525 - 536
  • [3] Adaptive trajectory tracking neural network control with robust compensator for robot manipulators
    Pham Van Cuong
    Wang Yao Nan
    Neural Computing and Applications, 2016, 27 : 525 - 536
  • [4] A NEW NEURAL-NETWORK CONTROL TECHNIQUE FOR ROBOT MANIPULATORS
    JUNG, S
    HSIA, TC
    ROBOTICA, 1995, 13 : 477 - 484
  • [5] Adaptive fuzzy compensator based CNF control for uncertain robot manipulators
    Jiang Y.
    Gong C.
    Lü K.
    Dai J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (08): : 106 - 111
  • [6] Optimal design of CMAC neural-network controller for robot manipulators
    Kim, YH
    Lewis, FL
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2000, 30 (01): : 22 - 31
  • [7] Adaptive Trajectory Neural Network Tracking Control for Industrial Robot Manipulators with Deadzone Robust Compensator
    La Van Truong
    Shou Dao Huang
    Vu Thi Yen
    Pham Van Cuong
    International Journal of Control, Automation and Systems, 2020, 18 : 2423 - 2434
  • [8] Adaptive Trajectory Neural Network Tracking Control for Industrial Robot Manipulators with Deadzone Robust Compensator
    La Van Truong
    Shou Dao Huang
    Vu Thi Yen
    Pham Van Cuong
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (09) : 2423 - 2434
  • [10] A SIMPLE ALTERNATIVE TO NEURAL-NETWORK CONTROL SCHEME FOR ROBOT MANIPULATORS
    HSIA, TC
    JUNG, S
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1995, 42 (04) : 414 - 416