Numerical solution of optimal control problems

被引:0
|
作者
机构
关键词
Control system synthesis - Problem solving - Fourier transforms - Algorithms - Approximation theory - Boundary conditions - Ordinary differential equations - Integral equations - Quadratic programming - Constraint theory - Parameter estimation - Linear control systems;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a numerical technique for solving optimal control problems which approximates both the state and control variables by Fourier series with unknown coefficients. An algorithm is provided for approximating the system dynamics, boundary conditions, and objective functional. Application of this method results in the transformation of differential and integral expressions into systems of algebraic expressions in the Fourier coefficients; the optimal control problems then become mathematical programming problems. Linear-quadratic problems can be transformed into unconstrained programming problems. Numerical examples are given to illustrate the simplicity and efficiency of this approach.
引用
收藏
页码:233 / 241
相关论文
共 50 条
  • [1] Numerical solution of optimal control problems
    Hua, HP
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2000, 21 (05): : 233 - 241
  • [2] Numerical solution of optimal control problems
    Hua, Heping
    [J]. 2000, John Wiley & Sons Ltd, Chichester, United Kingdom (21)
  • [3] Direct Numerical Solution of Optimal Control Problems
    Rath, Gerhard
    Harker, Matthew
    [J]. 2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 304 - 308
  • [4] NUMERICAL SOLUTION OF CERTAIN OPTIMAL CONTROL PROBLEMS
    ABADIE, J
    BICHARA, M
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (20): : 77 - 105
  • [5] Numerical solution of some optimal control problems
    Kolmanovskii, VB
    Shaikhet, LE
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 1996, 14 (01) : 101 - 130
  • [6] Numerical Solution of Optimal Control Problems with Constant Control Delays
    Ulrich Brandt-Pollmann
    Ralph Winkler
    Sebastian Sager
    Ulf Moslener
    Johannes P. Schlöder
    [J]. Computational Economics, 2008, 31 : 181 - 206
  • [7] Numerical solution of optimal control problems with convex control constraints
    Wachsmuth, D.
    [J]. Systems, Control, Modeling and Optimization, 2006, 202 : 319 - 327
  • [8] Numerical solution of optimal control problems with constant control delays
    Brandt-Pollmann, Ulrich
    Winkler, Ralph
    Sager, Sebastian
    Moslener, Ulf
    Schloeder, Johannes P.
    [J]. COMPUTATIONAL ECONOMICS, 2008, 31 (02) : 181 - 206
  • [9] NUMERICAL SOLUTION TO OPTIMAL CONTROL PROBLEMS OF OSCILLATORY PROCESSES
    Aida-Zade, Kamil
    Asadova, Jamila
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (06) : 4433 - 4445
  • [10] Numerical solution of constrained optimal control problems with parameters
    Fabien, BC
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1996, 80 (01) : 43 - 62