Generalization of the atomic random-phase-approximation method for diatomic molecules: N2 photoionization cross-section calculations

被引:0
|
作者
Semenov, S.K.
Cherepkov, N.A.
Fecher, G.H.
Schonhense, G.
机构
[1] Stt. Univ. of Aerosp. Instrum., 190000 St. Petersburg, Russia
[2] Institut für Physik, Johannes-Gutenberg-Universität, 55099 Mainz, Germany
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Partial and total photoionization cross sections of N2 molecule are calculated using the generalization of the random-phase approximation (RPA) which earlier has been successfully applied to the description of the atomic photoionization processes. According to this method, at first the Hartree-Fock (HF) ground-state wave functions are calculated in prolate spheroidal coordinates using the fixed-nuclei approximation. With their help the zero order basis set of single particle Hartree-Fock wave functions containing both discrete excited states and continuous spectrum is calculated in the field of a frozen core of a singly charged ion. The calculations are performed for all four valence shells of N2 molecule. 3σg, 1 πu, 2 , σu, and 2σg, with the intershell correlations fully taken into account within the RPA method. It is demonstrated that different intershell correlations, especially between three outer shells, play an important role in photoionization process. Examples of the influence of intershell correlations on several transitions are presented. Partial and total photoionization cross sections of N2 molecule obtained by this method in the photon energy range from ionization threshold up to 70 eV are in a good agreement with the existing experimental data and with the recent RPA calculations [Cacelli et al., Phys. Rev. A 57, 1895 (1998)].
引用
收藏
页码:327041 / 327041
相关论文
共 50 条