Homotopy continuation method for solving normal equations

被引:0
|
作者
机构
来源
Math Program Ser A | / 3卷 / 317-337期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A homotopy continuation method for solving normal equations
    Hichem Sellami
    [J]. Mathematical Programming, 1998, 82 : 317 - 337
  • [2] A homotopy continuation method for solving normal equations
    Sellami, H
    [J]. MATHEMATICAL PROGRAMMING, 1998, 82 (03) : 317 - 337
  • [3] Homotopy continuation method for solving systems of nonlinear and polynomial equations
    Chen, Tianran
    Li, Tien-Yien
    [J]. COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2015, 15 (02) : 119 - 307
  • [4] Super Ostrowski homotopy continuation method for solving polynomial system of equations
    Nor, Hafizudin Mohamad
    Rahman, Amirah
    Ismail, Ahmad Izani Md
    Abd Majid, Ahmad
    [J]. MATEMATIKA, 2016, 32 : 53 - 67
  • [5] Probing Homotopy Continuation Method for Solving Nonlinear Magnetic Network Equations
    Yang, Peipei
    Liang, Yanping
    Bian, Xu
    Wang, Chenguang
    [J]. IEEE ACCESS, 2021, 9 : 32239 - 32248
  • [6] Probing Homotopy Continuation Method for Solving Nonlinear Magnetic Network Equations
    Yang, Peipei
    Liang, Yanping
    Bian, Xu
    Wang, Chenguang
    [J]. IEEE Access, 2021, 9 : 32239 - 32248
  • [7] SOLVING NONLINEAR EQUATIONS BY ADAPTIVE HOMOTOPY CONTINUATION
    KALABA, R
    TESFATSION, L
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1991, 41 (02) : 99 - 115
  • [8] Solving the nonlinear equations by the Newton-homotopy continuation method with adjustable auxiliary homotopy function
    Wu, TM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (01) : 383 - 388
  • [9] A HOMOTOPY CONTINUATION METHOD FOR SOLVING A MATRIX EQUATION
    Li, Jing
    Zhang, Yuhai
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 327 - 342
  • [10] Solving Non-Linear Algebraic Equations by a Scalar Newton-homotopy Continuation Method
    Ku, Cheng-Yu
    Yeih, Weichung
    Liu, Chein-Shan
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (06) : 435 - 450