Resolving degeneracy in combinatorial linear programs. Steepest edge, steepest ascent, and parametric ascent

被引:0
|
作者
Boyd, E.A.
机构
来源
Mathematical Programming, Series A | 1995年 / 68卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] RESOLVING DEGENERACY IN COMBINATORIAL LINEAR-PROGRAMS - STEEPEST EDGE, STEEPEST ASCENT, AND PARAMETRIC ASCENT
    BOYD, EA
    MATHEMATICAL PROGRAMMING, 1995, 68 (02) : 155 - 168
  • [2] STEEPEST ASCENT FOR LARGE-SCALE LINEAR PROGRAMS
    GRINOLD, RC
    SIAM REVIEW, 1972, 14 (03) : 447 - +
  • [3] MULTICRITERIA STEEPEST ASCENT
    DUINEVELD, CAA
    BRUINS, CHP
    SMILDE, AK
    BOLHUIS, GK
    ZUURMAN, K
    DOORNBOS, DA
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1994, 25 (02) : 183 - 201
  • [4] NEW PROCEDURE FOR STEEPEST ASCENT
    MYERS, RH
    KHURI, AI
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1979, 8 (14): : 1359 - 1376
  • [5] PROPERTY OF METHOD OF STEEPEST ASCENT
    JOHNSON, CH
    FOLKS, JL
    ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01): : 435 - &
  • [6] NEWTONS METHOD AND STEEPEST ASCENT
    FANG, BT
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (02) : 203 - &
  • [7] Steepest ascent tariff reform
    Raimondos-Moller, Pascalis
    Woodland, Alan D.
    ECONOMIC THEORY, 2014, 55 (01) : 69 - 99
  • [8] Steepest ascent tariff reform
    Pascalis Raimondos-Møller
    Alan D. Woodland
    Economic Theory, 2014, 55 : 69 - 99
  • [9] ITERATED STEEPEST ASCENT ON ELLIPSOIDAL CONTOURS
    BEUHLER, RJ
    SHAH, BV
    KEMPTHORNE, O
    ANNALS OF MATHEMATICAL STATISTICS, 1961, 32 (02): : 622 - 623
  • [10] Ridge detection with the steepest ascent method
    Koka, Shinji
    Anada, Koichi
    Nomaki, Kenshi
    Sugita, Kimio
    Tsuchida, Kensei
    Yaku, Takeo
    Procedia Computer Science, 2011, 4 : 216 - 221