Phase space derivation of a variational principle for one-dimensional Hamiltonian systems

被引:0
|
作者
Benguria, R.D. [1 ]
Depassier, M.C. [1 ]
机构
[1] Departamento de Física, P. Univ. Católica de Chile, Casilla 306, Santiago 22, Chile
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:144 / 146
相关论文
共 50 条
  • [1] Phase space derivation of a variational principle for one-dimensional Hamiltonian systems
    Benguria, RD
    Depassier, MC
    PHYSICS LETTERS A, 1998, 240 (03) : 144 - 146
  • [3] One-dimensional aperiodic systems in phase space
    Spisak, B. J.
    Woloszyn, M.
    ACTA PHYSICA POLONICA B, 2007, 38 (05): : 1951 - 1960
  • [4] A VARIATIONAL PRINCIPLE FOR A ONE-DIMENSIONAL STELLAR SYSTEM
    HOHL, F
    FEIX, MR
    ASTROPHYSICAL JOURNAL, 1968, 151 (2P1): : 783 - &
  • [5] VARIATIONAL PRINCIPLE FOR ONE-DIMENSIONAL INVISCID FLOW
    Liu, Xian-Yong
    Liu, Yan-Ping
    Wu, Zeng-Wen
    THERMAL SCIENCE, 2022, 26 (03): : 2465 - 2469
  • [6] SYMMETRIES OF HAMILTONIAN ONE-DIMENSIONAL SYSTEMS
    LEACH, PGL
    BOUQUET, S
    DEWISME, A
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1993, 28 (06) : 705 - 712
  • [7] Phase space description of localization in disordered one-dimensional systems
    Woloszyn, M.
    Spisak, B. J.
    Maksymowicz, A. Z.
    ACTA PHYSICA POLONICA A, 2006, 110 (04) : 523 - 535
  • [8] Hamiltonian reductions of the one-dimensional Vlasov equation using phase-space moments
    Chandre, C.
    Perin, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
  • [9] ON DERIVATION OF A VARIATIONAL PRINCIPLE FOR LINEAR SYSTEMS
    SELENGUT, DS
    NUCLEAR SCIENCE AND ENGINEERING, 1963, 17 (02) : 310 - &
  • [10] A variational principle for contact Hamiltonian systems
    Wang, Ya-Nan
    Yan, Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) : 4047 - 4088