Quantum motion in a Paul trap

被引:0
|
作者
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quasienergy eigenstates are constructed for a quantum harmonic oscillator with a periodic, time-dependent spring constant. This is done by a sequence of canonical transformations. The wave function in the new variables is that of an ordinary oscillator.
引用
收藏
相关论文
共 50 条
  • [1] QUANTUM MOTION IN A PAUL TRAP
    BROWN, LS
    PHYSICAL REVIEW LETTERS, 1991, 66 (05) : 527 - 529
  • [2] QUANTUM MOTION IN A PAUL TRAP
    STENHOLM, S
    JOURNAL OF MODERN OPTICS, 1992, 39 (02) : 279 - 290
  • [3] Quantum Motion of a Damped Particle in a Paul Trap
    Pedrosa, I. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (03) : 587 - 591
  • [4] Quantum Motion of a Damped Particle in a Paul Trap
    I. A. Pedrosa
    Brazilian Journal of Physics, 2021, 51 : 587 - 591
  • [5] QUANTUM MOTION OF A CHARGED-PARTICLE IN A PAUL TRAP
    LI, FL
    PHYSICAL REVIEW A, 1993, 47 (06): : 4975 - 4981
  • [6] Quantum nondemolition measurements in a Paul trap
    Camacho, A
    PHYSICS LETTERS A, 2000, 277 (01) : 7 - 12
  • [7] Paul trap and the problem of quantum stability
    Ugulava, A.
    Chotorlishvili, L.
    Mchedlishvili, G.
    Nickoladze, K.
    MODERN PHYSICS LETTERS B, 2008, 22 (20): : 1959 - 1964
  • [8] EXACT SOLUTION FOR THE MOTION OF A PARTICLE IN A PAUL TRAP
    FENG, M
    WANG, KL
    PHYSICS LETTERS A, 1995, 197 (02) : 135 - 138
  • [9] Instabilities of ion motion in a linear Paul trap
    Drakoudis, A.
    Soellner, M.
    Werth, G.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2006, 252 (01) : 61 - 68
  • [10] Linear Paul Trap for Quantum Logic Experiments
    Semerikov, I. A.
    Zalivako, I. V.
    Borisenko, A. S.
    Aksenov, M. D.
    Kolachevsky, N. N.
    Khabarova, K. Yu.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2020, 47 (12) : 385 - 389