PARABOLIC CURVE APPROXIMATION IN DESIGN AND FINITE ELEMENT APPLICATIONS.

被引:0
|
作者
Baart, M.L. [1 ]
McLeod, R.J.Y. [1 ]
机构
[1] CSIR, Pretoria, S Afr, CSIR, Pretoria, S Afr
来源
CAD Computer Aided Design | 1986年 / 18卷 / 01期
关键词
COMPUTER PROGRAMMING - Algorithms - MATHEMATICAL TECHNIQUES - Finite Element Method;
D O I
暂无
中图分类号
学科分类号
摘要
The approximation of curves by parameterized parablic segments that connect selected nodes on the given curve arises naturally in all quadratic isoprametric transformations. The use of parabolae allows the introduction of a geometric measure of the discrepancy between given and approximating curves. The free parameters that determine a particular parabola can be used to find an optimal approximation. Constraints that prevent overspill and curve degeneracy are introduced. The resulting constrained optimization problem can be solved by a simple special purpose algorithm. Experimental results indicate that the method yields satisfactory approximations to given curves.
引用
收藏
页码:29 / 32
相关论文
共 50 条
  • [1] PARABOLIC CURVE APPROXIMATION IN DESIGN AND FINITE-ELEMENT APPLICATIONS
    BAART, ML
    MCLEOD, RJY
    COMPUTER-AIDED DESIGN, 1986, 18 (01) : 29 - 32
  • [2] ENERGY PERTURBATION FINITE ELEMENT TECHNIQUE FOR DAMAGE TOLERANT DESIGN APPLICATIONS.
    Sha, George T.
    Chen, J.K.
    Yang, Chien-Tung
    1600, (29):
  • [3] Finite element approximation of nonlocal parabolic problem
    Chaudhary, Sudhakar
    Srivastava, Vimal
    Kumar, V. V. K. Srinivas
    Srinivasan, Balaji
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 786 - 813
  • [4] Finite element approximation of parabolic hemivariational inequalities
    Miettinen, M
    Haslinger, J
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (5-6) : 565 - 585
  • [5] Finite element approximation of parabolic hemivariational inequalities
    Univ of Jyvaskyla, Jyvaskyla, Finland
    Numer Funct Anal Optim, 5-6 (565-585):
  • [6] Finite element approximation of 2D parabolic optimal design problems
    Cea, Miguel
    Zuazua, Enrique
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 151 - +
  • [7] FINITE ELEMENT APPROXIMATION OF THE PARABOLIC FRACTIONAL OBSTACLE PROBLEM
    Otarola, Enrique
    Salgado, Abner J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2619 - 2639
  • [8] SUPERCONVERGENCE OF THE MORTAR FINITE ELEMENT APPROXIMATION TO A PARABOLIC PROBLEM
    GU Hong ZHOU Aihui(Institute of Systems Science
    Systems Science and Mathematical Sciences, 1999, (04) : 350 - 356
  • [9] FINITE ELEMENT APPROXIMATION OF SPARSE PARABOLIC CONTROL PROBLEMS
    Casas, Eduardo
    Mateos, Mariano
    Roesch, Arnd
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2017, 7 (03) : 393 - 417
  • [10] USE OF FINITE-ELEMENT MODELING IN MATERIALS APPLICATIONS.
    Enstrom, Ron
    RCA engineer, 1984, 29 (05): : 46 - 55