Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials

被引:13
|
作者
Crescimanno, M. [1 ,1 ]
Landsberg, A.S. [1 ,1 ]
机构
[1] Department of Physics, Youngstown State University, Youngstown, OH 44555-2001, United States
关键词
Electron energy levels - Fermions - Fourier transforms - Harmonic analysis - Mathematical models - Matrix algebra - Specific heat;
D O I
10.1103/PhysRevA.63.035601
中图分类号
学科分类号
摘要
The thermodynamic properties of N trapped non-interacting bosons and fermions are presented. The peculiar relationship between the heat capacities resulting between the bose and Fermi systems are shown. The excitation spectra of one-dimensional Fermi and Bose systems are shown to be identical. The proofs of equivalence are provided on the basis of combinatoric augment.
引用
收藏
页码:356011 / 356013
相关论文
共 50 条
  • [1] Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials
    Crescimanno, M
    Landsberg, AS
    PHYSICAL REVIEW A, 2001, 63 (03):
  • [2] Bosons and fermions in a one-dimensional harmonic oscillator potential
    Wybourne, BG
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (03) : 1249 - 1252
  • [3] The excitation spectrum of bosons and fermions on the one-dimensional superlattice
    Goncalves, LL
    deLima, JP
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (16) : 3447 - 3459
  • [4] ONE-DIMENSIONAL QUANTUM RANDOM-WALK FOR FERMIONS AND BOSONS
    GODOY, S
    ESPINOSA, F
    PHYSICAL REVIEW E, 1995, 52 (04): : 3381 - 3389
  • [6] SU(N) fermions in a one-dimensional harmonic trap
    Laird, E. K.
    Shi, Z. -Y.
    Parish, M. M.
    Levinsen, J.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [7] Few interacting fermions in a one-dimensional harmonic trap
    Sowinski, Tomasz
    Grass, Tobias
    Dutta, Omjyoti
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [8] Mixture of interacting supersymmetric spinless fermions and bosons in a one-dimensional trap
    Schlottmann, P.
    MODERN PHYSICS LETTERS B, 2016, 30 (25):
  • [9] Exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions
    Gu, Shi-Jian
    Cao, Junpeng
    Chen, Shu
    Lin, Hai-Qing
    NUCLEAR PHYSICS B, 2009, 820 (03) : 753 - 779
  • [10] Work distributions of one-dimensional fermions and bosons with dual contact interactions
    Wang, Bin
    Zhang, Jingning
    Quan, H. T.
    PHYSICAL REVIEW E, 2018, 97 (05)