On a two-level multigrid solution method for finite markov chains

被引:0
|
作者
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] ON A 2-LEVEL MULTIGRID SOLUTION METHOD FOR FINITE MARKOV-CHAINS
    KRIEGER, UR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 415 - 438
  • [2] TWO-LEVEL BALANCE MODEL OF PRODUCTS DISTRIBUTION BASED ON MARKOV CHAINS
    Lapshyn, V., I
    Kuznichenko, V. M.
    Stetsenko, T., V
    FINANCIAL AND CREDIT ACTIVITY-PROBLEMS OF THEORY AND PRACTICE, 2018, 2 (25): : 219 - 225
  • [3] Compact adaptive aggregation multigrid method for Markov chains
    Chen, Ying
    Huang, Ting-Zhu
    Wen, Chun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (01) : 101 - 120
  • [4] A Two-Level Spectral Preconditioning for the Finite Element Method
    He, Zi
    Ding, Weiying
    He, Ningye
    Chen, Rushan
    2013 PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), VOLS 1 AND 2, 2013,
  • [5] ALGEBRAIC MULTIGRID FOR MARKOV CHAINS
    De Sterck, H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Miller, K.
    Ruge, J.
    Sanders, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02): : 544 - 562
  • [6] Comparison of partitioning techniques for two-level iterative solvers on large, sparse Markov chains
    Dayar, T
    Stewart, WJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05): : 1691 - 1705
  • [7] A COMPARISON OF TWO-LEVEL PRECONDITIONERS BASED ON MULTIGRID AND DEFLATION
    Tang, J. M.
    MacLachlan, S. P.
    Nabben, R.
    Vuik, C.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) : 1715 - 1739
  • [8] A TWO-LEVEL ENRICHED FINITE ELEMENT METHOD FOR A MIXED PROBLEM
    Allendes, Alejandro
    Barrenechea, Gabriel R.
    Hernandez, Erwin
    Valentin, Frederic
    MATHEMATICS OF COMPUTATION, 2011, 80 (273) : 11 - 41
  • [9] SMOOTHED AGGREGATION MULTIGRID FOR MARKOV CHAINS
    De Sterck, H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Miller, K.
    Pearson, J.
    Ruge, J.
    Sanders, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 40 - 61
  • [10] TWO-LEVEL CONVERGENCE THEORY FOR MULTIGRID REDUCTION IN TIME (MGRIT)
    Dobrev, V. A.
    Kolev, T. Z.
    Petersson, N. A.
    Schroder, J. B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S501 - S527