On the variance of the Gaussian quadrature rule

被引:0
|
作者
Brass, Helmut [1 ]
机构
[1] Institut für Angewandte Mathematik, TU Braunschweig, Abteilung Numerik, Pockelsstr. 14, D-38106 Braunschweig, Germany
来源
Calcolo | 1998年 / 35卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:125 / 129
相关论文
共 50 条
  • [1] On the variance of the Gaussian quadrature rule
    Brass H.
    CALCOLO, 1998, 35 (3) : 125 - 129
  • [2] Gaussian interval quadrature rule for exponential weights
    Cvetkovic, Aleksandar S.
    Milovanovic, Gradimir V.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9332 - 9341
  • [3] Anti-Gaussian Quadrature Rule for Trigonometric Polynomials
    Petrovic, Nevena Z.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tornovic
    FILOMAT, 2022, 36 (03) : 1005 - 1019
  • [4] Gaussian quadrature rule for arbitrary weight function and interval
    Fukuda, H
    Katuya, M
    Alt, EO
    Matveenko, AV
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (02) : 143 - 150
  • [5] Slepian functions on the sphere, generalized Gaussian quadrature rule
    Miranian, L
    INVERSE PROBLEMS, 2004, 20 (03) : 877 - 892
  • [6] A GAUSSIAN QUADRATURE RULE FOR OSCILLATORY INTEGRALS ON A BOUNDED INTERVAL
    Asheim, Andreas
    Deano, Alfredo
    Huybrechs, Daan
    Wang, Haiyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (03) : 883 - 901
  • [7] ON KUTT GAUSSIAN QUADRATURE RULE FOR FINITE-PART INTEGRALS
    IOAKIMIDIS, NI
    APPLIED NUMERICAL MATHEMATICS, 1989, 5 (03) : 209 - 213
  • [8] A MODIFIED GAUSSIAN QUADRATURE RULE FOR INTEGRALS INVOLVING POLES OF ANY ORDER
    HUNTER, DB
    OKECHA, GE
    BIT, 1986, 26 (02): : 233 - 240
  • [9] A QUADRATURE RULE OF LOBATTO-GAUSSIAN FOR NUMERICAL INTEGRATION OF ANALYTIC FUNCTIONS
    Mohanty, Sanjit Kumar
    Dash, Rajani Ballav
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (04): : 705 - 718
  • [10] MODIFIED GAUSSIAN QUADRATURE RULE FOR INTEGRALS INVOLVING POLES OF ANY ORDER.
    Hunter, D.B.
    Okecha, G.E.
    BIT (Copenhagen), 1986, 26 (02): : 233 - 240