Construction of a uniformly valid solution for a Rayleigh wave in a weakly anisotropic elastic medium

被引:0
|
作者
Makeev, V.M.
Rossikhin, Yu.A.
机构
关键词
Elastic Waves - Propagation - Mathematical Techniques - Differential Equations;
D O I
暂无
中图分类号
学科分类号
摘要
When using the perturbation method to investigate surface waves in crystals of differing symmetry, various small parameters are introduced, e.g., the angles by which the planes and direction of propagation of the surface wave diverge from selected planes and directions; a parameter taking account of distortion of elastic symmetry of the crystal; a quantity characterizing the deviation of the anisotropic elastic coefficients from the isotropic ones (materials with such properties are referred to as weakly anisotropic). In this paper we employ the small-parameter method to examine the behavior of surface waves in elastic weakly anisotropic media. We demonstrate that such media exhibit singular directions, in the neighborhood of which direct expansion becomes invalid. The method of extended parameters is employed to construct a uniformly valid solution.
引用
收藏
页码:75 / 82
相关论文
共 50 条
  • [1] Eshelby Tensor Construction for a Weakly Anisotropic Elastic Medium
    Berezkin, B. A.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2011, 66 (01) : 22 - 24
  • [2] Rayleigh waves in an anisotropic elastic medium and impedance
    A. P. Katchalov
    Journal of Mathematical Sciences, 2012, 185 (4) : 581 - 590
  • [3] RAYS OF LIGHT IN WEAKLY ANISOTROPIC ELASTIC MEDIUM
    JOBERT, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1973, 277 (21): : 651 - 653
  • [4] UNIFORMLY VALID PERTURBATION SERIES FOR WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM
    LESSER, MB
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1970, 47 (05): : 1297 - &
  • [5] POINT SOURCES OF VIBRATIONS IN A WEAKLY ANISOTROPIC ELASTIC MEDIUM
    KISELEV, AP
    DOKLADY AKADEMII NAUK SSSR, 1988, 300 (04): : 824 - 826
  • [6] On the elastic wave equation in weakly anisotropic VTI media
    Bloot, R.
    Schleicher, J.
    Santos, L. T.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2013, 192 (03) : 1144 - 1155
  • [7] UNIFORMLY VALID ANALYTICAL SOLUTION TO THE PROBLEM OF A DECAYING SHOCK-WAVE
    SHARMA, VD
    RAM, R
    SACHDEV, PL
    JOURNAL OF FLUID MECHANICS, 1987, 185 : 153 - 170
  • [8] RAYLEIGH-LOVE WAVE COUPLING IN AN AZIMUTHALLY ANISOTROPIC MEDIUM
    KAWASAKI, I
    KOKETSU, K
    JOURNAL OF PHYSICS OF THE EARTH, 1990, 38 (05): : 361 - 390
  • [9] The azimuthal dependence of Rayleigh wave ellipticity in a slightly anisotropic medium
    Hu, Shaoqian
    Yao, Huajian
    Yang, Hsin-Ying
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 225 (02) : 1359 - 1374
  • [10] Uniformly valid solution for acoustic propagation in weakly tapered circular waveguides: Liquid jet example
    Lonzaga, Joel B.
    Thiessen, David B.
    Marston, Philip L.
    Journal of the Acoustical Society of America, 2008, 124 (01): : 151 - 160