Representing imperative language in higher-order action calculus

被引:0
|
作者
Jin, Ying
Jin, Cheng-Zhi
机构
来源
| 2002年 / Science Press卷 / 39期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Typing termination in a higher-order concurrent imperative language
    Boudol, Gerard
    INFORMATION AND COMPUTATION, 2010, 208 (06) : 716 - 736
  • [2] Soundness of data refinement for a higher-order imperative language
    Naumann, DA
    THEORETICAL COMPUTER SCIENCE, 2002, 278 (1-2) : 271 - 301
  • [3] Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language
    Neis, Georg
    Hur, Chung-Kil
    Kaiser, Jan-Oliver
    McLaughlin, Craig
    Dreyer, Derek
    Vafeiadis, Viktor
    PROCEEDINGS OF THE 20TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING (ICFP'15), 2015, : 166 - 178
  • [4] Pilsner: A Compositionally Verified Compiler for a Higher-Order Imperative Language
    Neis, Georg
    Hur, Chung-Kil
    Kaiser, Jan-Oliver
    McLaughlin, Craig
    Dreyer, Derek
    Vafeiadis, Viktor
    ACM SIGPLAN NOTICES, 2015, 50 (09) : 166 - 178
  • [5] Predicate transformer semantics of a higher-order imperative language with record subtyping
    Naumann, DA
    SCIENCE OF COMPUTER PROGRAMMING, 2001, 41 (01) : 1 - 51
  • [6] Reversibility in the higher-order π-calculus
    Lanese, Ivan
    Mezzina, Claudio Antares
    Stefani, Jean-Bernard
    THEORETICAL COMPUTER SCIENCE, 2016, 625 : 25 - 84
  • [7] A Reflective Higher-order Calculus
    Meredith, L. G.
    Radestock, Matthias
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2005, 141 (05) : 49 - 67
  • [8] Higher-order logic programming: An expressive language for representing qualitative preferences
    Charalambidis, Angelos
    Rondogiannis, Panos
    Troumpoukis, Antonis
    SCIENCE OF COMPUTER PROGRAMMING, 2018, 155 : 173 - 197
  • [9] Higher-Order Logic Programming: an Expressive Language for Representing Qualitative Preferences
    Charalambidis, Angelos
    Rondogiannis, Panos
    Troumpoukis, Antonis
    PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE PROGRAMMING (PPDP 2016), 2016, : 24 - 37
  • [10] Higher-order lazy narrowing calculus: A solver for higher-order equations
    Ida, T
    Marin, M
    Suzuki, T
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2001, 2001, 2178 : 479 - 493