Possibility theory based safety assessment

被引:0
|
作者
Möller, B. [1 ]
Beer, M. [1 ]
Graf, W. [1 ]
Hoffmann, A. [1 ]
机构
[1] Department of Civil Engineering, Dresden University of Technology, Mommsenstraße 13, D-01062 Dresden, Germany
关键词
Probability - Risk assessment - Statistical methods;
D O I
暂无
中图分类号
学科分类号
摘要
An assessment of the safety of structures may be carried out on the basis of different known safety concepts (global safety factor, semiprobabilistic approach using partial safety factors, probabilistic approximation solution using first- and second-order reliability theory, probabilistic `exact' solution). The application of these concepts presupposes special knowledge concerning input values, e.g., permissible or prescribed values, quantile values, distribution function. This especially applies to probabilistic methods. Inaccuracies and statistically nondescribable uncertainties in the input data are either ignored in these methods or only accounted for approximately using crisp bounds. Fuzzy set theory enables such uncertainties to be described mathematically and processed in the analysis of structures. The uncertain results of fuzzy structural analysis may be evaluated by various methods. In this article a safety assessment method is described based on possibility theory. In contrast to the above-mentioned concepts, the safety assessment of structures described here takes into account nonstochastic uncertainties and subjective estimates of objective values by experts based on possibility theory. It is possible by this means to obtain sufficiently reliable descriptions of the input data for further processing. The uncertainties introduced into the analysis are later reflected in the results. A realistic description of system behavior is obtained by applying high-quality algorithms in the structural analysis. The uncertain results serve as a starting point for the safety assessment. The method described here forms a supplement to safety concepts already in use.
引用
收藏
页码:81 / 91
相关论文
共 50 条
  • [1] Comprehensive Assessment of Assembling-possibility of Products Based on Extensive Theory
    Chen Qidong
    Rui Yannian
    Chen Qingzhang
    Hua Zhengxiao
    Zhao Liansheng
    DIGITAL DESIGN AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2010, 102-104 : 237 - +
  • [2] Dynamic safety assessment of oil and gas pipeline containing internal corrosion defect using probability theory and possibility theory
    Wu, Wei
    Li, Yun
    Cheng, Guangxu
    Zhang, Hao
    Kang, Jia
    ENGINEERING FAILURE ANALYSIS, 2019, 98 : 156 - 166
  • [3] ELEMENTARY QUEUING THEORY BASED ON POSSIBILITY THEORY
    BUCKLEY, JJ
    FUZZY SETS AND SYSTEMS, 1990, 37 (01) : 43 - 52
  • [5] Construction of possibility distributions for reliability analysis based on possibility theory
    Tong, X
    Huang, HZ
    Zuo, MJ
    Advanced Reliability Modeling, 2004, : 555 - 562
  • [6] Safety assessment and control of blasting vibration based on the probability theory
    Wang L.
    Deng B.
    Mo Q.
    Zhao J.
    Xiao H.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (14): : 122 - 129
  • [7] Risk Assessment of Building Fire Safety Based on the Extension Theory
    Wu, Pi-Chu
    Wang, Meng-Hui
    Lin, Tze-Chun
    2014 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2014), 2014, : 872 - 875
  • [8] A semantics for possibility theory based on likelihoods
    Dubois, D
    Moral, S
    Prade, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 205 (02) : 359 - 380
  • [9] Decision Making Based on Possibility Theory
    Uzhga-Rebrov, Oleg
    Grabusts, Peter
    2022 63RD INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS), 2022,
  • [10] Newsvendor problems based on possibility theory
    Guo, PJ
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 213 - 219