Bootstrapping pseudolikelihood models for clustered binary data

被引:0
|
作者
Aerts, Marc
Claeskens, Gerda
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
27
引用
收藏
页码:515 / 530
相关论文
共 50 条
  • [1] Bootstrapping pseudolikelihood models for clustered binary data
    Aerts, M
    Claeskens, G
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1999, 51 (03) : 515 - 530
  • [2] Bootstrapping Pseudolikelihood Models for Clustered Binary Data
    Marc Aerts
    Gerda Claeskens
    Annals of the Institute of Statistical Mathematics, 1999, 51 : 515 - 530
  • [3] Bootstrapping clustered data
    Field, C. A.
    Welsh, A. H.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 369 - 390
  • [4] Bootstrapping for highly unbalanced clustered data
    Samanta, Mayukh
    Welsh, A. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 59 : 70 - 81
  • [5] Bootstrapping Robust Estimates for Clustered Data
    Field, C. A.
    Pang, Zhen
    Welsh, A. H.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (492) : 1606 - 1616
  • [6] Performance of Mixed Effects for Clustered Binary Data Models
    El-Saeiti, Intesar N.
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 80 - 85
  • [7] Association Models for Clustered Data with Binary and Continuous Responses
    Lin, Lanjia
    Bandyopadhyay, Dipankar
    Lipsitz, Stuart R.
    Sinha, Debajyoti
    BIOMETRICS, 2010, 66 (01) : 287 - 293
  • [8] Bootstrapping Clustered Data in R using lmeresampler
    Loy, Adam
    Korobova, Jenna
    R JOURNAL, 2022, 14 (04): : 103 - 120
  • [9] Bootstrap tests for misspecified models, with application to clustered binary data
    Aerts, M
    Claeskens, G
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (03) : 383 - 401
  • [10] Bootstrapping: A nonparametric approach to identify the effect of sparsity of data in the binary regression models
    Department of Statistics, Shahid Chamran University, Ahvaz, Iran
    J. Appl. Sci., 2008, 17 (2991-2997):