Minimum Feedback Node Sets in Trivalent Cayley Graphs

被引:0
|
作者
Suzuki, Yasuto [1 ]
Kaneko, Keiichi [1 ]
机构
[1] Faculty of Technology, Tokyo Univ. of Agric. and Technology, Koganei-shi, 184-8588, Japan
关键词
D O I
暂无
中图分类号
学科分类号
摘要
10
引用
收藏
页码:1634 / 1636
相关论文
共 50 条
  • [1] Minimum feedback node sets in trivalent Cayley graphs
    Suzuki, Y
    Kaneko, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (09): : 1634 - 1636
  • [2] A minimum feedback vertex set in the trivalent Cayley graph
    Tanaka, Yuuki
    Shibata, Yukio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (05) : 1269 - 1274
  • [3] On Minimum Feedback Vertex Sets in Graphs
    Takaoka, Asahi
    Tayu, Satoshi
    Ueno, Shuichi
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 429 - 434
  • [4] On the pagenumber of trivalent Cayley graphs
    Tanaka, Y
    Shibata, Y
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (08) : 1279 - 1292
  • [5] The correct diameter of trivalent Cayley graphs
    Tsai, CH
    Hung, CN
    Hsu, LH
    Chang, CH
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 109 - 111
  • [6] Correction to the diameter of trivalent Cayley graphs
    Okawa, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2001, E84A (05) : 1269 - 1272
  • [7] Hamilton cycles in Trivalent Cayley graphs
    Wagh, MD
    Mo, JC
    INFORMATION PROCESSING LETTERS, 1996, 60 (04) : 177 - 181
  • [8] Approximating minimum feedback sets and multicuts in directed graphs
    Even, G
    Naor, J
    Schieber, B
    Sudan, M
    ALGORITHMICA, 1998, 20 (02) : 151 - 174
  • [9] Approximating Minimum Feedback Sets and Multicuts in Directed Graphs
    G. Even
    J. (Seffi) Naor
    B. Schieber
    M. Sudan
    Algorithmica, 1998, 20 : 151 - 174
  • [10] Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs
    Liang, YD
    Chang, MS
    ACTA INFORMATICA, 1997, 34 (05) : 337 - 346