Comparison of artificial neural network efficiency for predicting the geomagnetic activity index Dst

被引:0
|
作者
Barkhatov, N.A.
Belliustin, N.S.
Levitin, A.E.
Sakharov, S.Yu.
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:385 / 395
相关论文
共 50 条
  • [1] Comparison of efficiency of artificial neural networks for forecasting the geomagnetic activity index dst
    Barkhatov N.A.
    Bellustin N.S.
    Levitin A.E.
    Sakharov S.Y.
    Radiophysics and Quantum Electronics, 2000, 43 (5) : 347 - 355
  • [2] Predicting Geomagnetic Activity: The Dst Index
    McPherron, Robert L.
    O'Brien, Paul
    SPACE WEATHER, 2001, 125 : 339 - 345
  • [3] Prediction of the geomagnetic storm associated Dst index using an artificial neural network algorithm
    Kugblenu, S
    Taguchi, S
    Okuzawa, T
    EARTH PLANETS AND SPACE, 1999, 51 (04): : 307 - 313
  • [4] Prediction of the geomagnetic storm associated Dst index using an artificial neural network algorithm
    Samuel Kugblenu
    Satoshi Taguchi
    Takashi Okuzawa
    Earth, Planets and Space, 1999, 51 : 307 - 313
  • [5] Use of Ensemble Approach and Stacked Generalization for Neural Network Prediction of Geomagnetic Dst Index
    Shiroky, Vladimir
    Myagkova, Irina
    Dolenko, Sergey
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 541 - 541
  • [6] Interval Emotional Neural Network for Prediction of Kp, AE and Dst geomagnetic activity indices
    Moghadam, R. Ahmadi
    Yaghoubi, M.
    SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 325 - 331
  • [7] The Dst index underestimates the solar cycle variation of geomagnetic activity
    Temerin, Michael
    Li, Xinlin
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (07) : 5603 - 5607
  • [8] Comparison of the Efficiency of Machine Learning Methods in Studying the Importance of Input Features in the Problem of Forecasting the Dst Geomagnetic Index
    Vladimirov, R. D.
    Shirokiy, V. R.
    Myagkova, I. N.
    Barinov, O. G.
    Dolenko, S. A.
    GEOMAGNETISM AND AERONOMY, 2023, 63 (02) : 161 - 171
  • [9] Comparison of the Efficiency of Machine Learning Methods in Studying the Importance of Input Features in the Problem of Forecasting the Dst Geomagnetic Index
    R. D. Vladimirov
    V. R. Shirokiy
    I. N. Myagkova
    O. G. Barinov
    S. A. Dolenko
    Geomagnetism and Aeronomy, 2023, 63 : 161 - 171
  • [10] Operational Dst index prediction model based on combination of artificial neural network and empirical model
    Park, Wooyeon
    Lee, Jaejin
    Kim, Kyung-Chan
    Lee, JongKil
    Park, Keunchan
    Miyashita, Yukinaga
    Sohn, Jongdae
    Park, Jaeheung
    Kwak, Young-Sil
    Hwang, Junga
    Frias, Alexander
    Kim, Jiyoung
    Yi, Yu
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2021, 11