Method for linearization of deterministic nonlinear mathematical models of control objects

被引:0
|
作者
Babak, O.V. [1 ]
机构
[1] Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine
来源
Journal of Automation and Information Sciences | 1997年 / 29卷 / 01期
关键词
Control nonlinearities - Functions - Mathematical models - Parameter estimation - Piecewise linear techniques - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
A method of the linearization of deterministic nonlinear mathematical models of control objects is introduced. This method is based on the realization of a mental full factorial experiment (MFEE). A practical application of the method is given.
引用
收藏
页码:16 / 22
相关论文
共 50 条
  • [1] A Linearization Approach for Rational Nonlinear Models in Mathematical Physics
    Van Gorder, Robert A.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (04) : 530 - 540
  • [2] A Linearization Approach for Rational Nonlinear Models in Mathematical Physics
    Robert A.Van Gorder
    CommunicationsinTheoreticalPhysics, 2012, 57 (04) : 530 - 540
  • [3] Control of Fuzzy Technological Objects Based on Mathematical Models
    Ospanov, Y. A.
    Orazbayev, B. B.
    Orazbayeva, K. N.
    Gancarczyk, T.
    Shaikhanova, A. K.
    2016 16TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2016, : 1487 - 1493
  • [4] Nonlinear control of power network models using feedback linearization
    Ball, S
    Barany, E
    Schaffer, S
    Wedeward, K
    Proceedings of the Third IASTED International Conference on Circuits, Signals, and Systems, 2005, : 20 - 25
  • [5] Explorations of the phase-space linearization method for deterministic and stochastic nonlinear dynamical systems
    Roy, D
    NONLINEAR DYNAMICS, 2000, 23 (03) : 225 - 258
  • [6] Explorations of the Phase-Space Linearization Method for Deterministic and Stochastic Nonlinear Dynamical Systems
    D. Roy
    Nonlinear Dynamics, 2000, 23 : 225 - 258
  • [7] IDENTIFICATION OF THE MATHEMATICAL MODELS OF THE TECHNOLOGICAL OBJECTS FOR ROBUST CONTROL SYSTEMS
    Lutska, N. M.
    Ladanyuk, A. P.
    Savchenko, T., V
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2019, (03) : 163 - 172
  • [8] Control of nonlinear chemical processes using neural models and feedback linearization
    Braake, HABT
    van Can, EJL
    Scherpen, JMA
    Verbruggen, HB
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (7-8) : 1113 - 1127
  • [9] Mathematical Models of Steganographic Objects
    Razinkov, E. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (04) : 353 - 363
  • [10] Neural network method of linearization and pole placement for the nonlinear control system
    Chongqing Univ, Chongqing, China
    Zidonghua Xuebao, 6 (708-712):