ON BOUNDARY ELEMENTS FOR REISSNER'S PLATE THEORY.

被引:52
|
作者
Karam, V.J. [1 ]
Telles, J.C.F. [1 ]
机构
[1] Univ Federal do Rio de Janeiro, Rio de Janeiro, Braz, Univ Federal do Rio de Janeiro, Rio de Janeiro, Braz
来源
Engineering Analysis | 1988年 / 5卷 / 01期
关键词
MATHEMATICAL TECHNIQUES - Boundary Element Method;
D O I
10.1016/0264-682X(88)90029-9
中图分类号
学科分类号
摘要
A direct boundary element formulation for Reissner's plate bending theory is reviewed and found to be also applicable to external problems in infinite plates. The formulation bears close resemblance with the standard plane strain boundary element implementation producing singular integrals of the same order. The numerical implementation is carried out for quadratic elements with complete freedom of local nodal positioning within the elements (i. e. continuous, discontinous and semi-continuous elements are used, including the possibility of double nodes). Numerical examples are presented to demonstrate the accuracy of the procedure.
引用
收藏
页码:21 / 27
相关论文
共 50 条
  • [1] ON BOUNDARY ELEMENTS FOR REISSNER PLATE-THEORY
    KARAM, VJ
    TELLES, JCF
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1988, 5 (01) : 21 - 27
  • [2] Boundary elements with equilibrium satisfaction: a consistent formulation for plate bending analysis considering Reissner's theory
    Soares, D.
    Telles, J. C. F.
    Guimaraes, S.
    COMPUTATIONAL MECHANICS, 2009, 43 (04) : 443 - 450
  • [3] Boundary elements with equilibrium satisfaction: a consistent formulation for plate bending analysis considering Reissner’s theory
    D. Soares
    J. C. F. Telles
    S. Guimarães
    Computational Mechanics, 2009, 43 : 443 - 450
  • [4] FREE BOUNDARY VALUE PROBLEM IN PLATE THEORY.
    Villaggio, P.
    1600, (50):
  • [5] Elastic-viscoplastic analysis of plate bending with Reissner's theory by the Boundary Element Method
    Borges, J. G. O.
    Karam, V. J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 132 : 146 - 158
  • [6] PLATE SPECTRAL ELEMENTS BASED UPON REISSNER-MINDLIN THEORY
    ZRAHIA, U
    BARYOSEPH, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (08) : 1341 - 1360
  • [7] Isogeometric boundary integral formulation for Reissner's plate problems
    Abdelmoety, Ahmed K.
    Naga, Taha H. A.
    Rashed, Youssef F.
    ENGINEERING COMPUTATIONS, 2020, 37 (01) : 21 - 53
  • [8] Boundary difficulties of Einstein's gravitation theory.
    Silberstein, L
    PHILOSOPHICAL MAGAZINE, 1919, 37 (218): : 230 - 236
  • [9] CONTRIBUTION TO PLATE THEORY.
    Franek, Alexander
    1600, (68):
  • [10] Quasi-conforming elements based on Reissner-Mindlin plate theory
    Wang, C. S.
    Hu, P.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, 2014, : 457 - 460