Geometrical theory for nonlinear least squares problems

被引:0
|
作者
Chavent, Guy [1 ]
机构
[1] Univ of Paris-Dauphine, Paris, France
关键词
6;
D O I
10.1007/bfb0004433
中图分类号
学科分类号
摘要
引用
收藏
页码:14 / 27
相关论文
共 50 条
  • [1] A GEOMETRICAL-THEORY FOR NONLINEAR LEAST-SQUARES PROBLEMS
    CHAVENT, G
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 159 : 14 - 27
  • [2] A Geometrical Approach to Indefinite Least Squares Problems
    Ignacio Giribet, Juan
    Maestripieri, Alejandra
    Martinez Peria, Francisco
    ACTA APPLICANDAE MATHEMATICAE, 2010, 111 (01) : 65 - 81
  • [3] A Geometrical Approach to Indefinite Least Squares Problems
    Juan Ignacio Giribet
    Alejandra Maestripieri
    Francisco Martínez Pería
    Acta Applicandae Mathematicae, 2010, 111 : 65 - 81
  • [4] On the separable nonlinear least squares problems
    Liu, Xin
    Yuan, Yaxiang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (03) : 390 - 403
  • [5] ON THE SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS
    Xin Liu LSEC
    Journal of Computational Mathematics, 2008, 26 (03) : 390 - 403
  • [6] On the separable nonlinear least squares problems
    LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
    不详
    J Comput Math, 2008, 3 (390-403):
  • [8] Implicit filtering and nonlinear least squares problems
    Kelley, CT
    SYSTEM MODELING AND OPTIMIZATION XX, 2003, 130 : 71 - 90
  • [9] NONLINEAR LEAST-SQUARES PROBLEMS THAT SPLIT
    PEREYRA, V
    GOLUB, G
    ACTA CIENTIFICA VENEZOLANA, 1972, 23 : 28 - +
  • [10] Variable projection for nonlinear least squares problems
    Dianne P. O’Leary
    Bert W. Rust
    Computational Optimization and Applications, 2013, 54 : 579 - 593