Wrinkling of epoxy powder coatings

被引:0
|
作者
机构
[1] Basu, Soumendra K.
[2] Scriven, L.E.
[3] Francis, L.F.
[4] McCormick, A.V.
[5] Reichert, Veronica R.
来源
Reichert, V.R. | 1600年 / John Wiley and Sons Inc.卷 / 98期
关键词
Catalysts - Crosslinking - Differential scanning calorimetry - Epoxy resins - Oligomers - Profilometry;
D O I
暂无
中图分类号
学科分类号
摘要
Differential scanning calorimetry (DSC) and mechanical profilometry were used to study wrinkle formation in curing epoxy powder coatings. Powder coating formulations were studied that contained solid epoxy resins, methylene disalicylic acid (MDSA) crosslinker, and an amine-blocked Lewis acid catalyst. Both the crosslinker (MDSA) and the amine-blocked catalyst are required for wrinkle formation. Evaporation of the blocking amine from the free surface of the coating generated a depthwise gradient in the extent of polymerization and crosslinking, and hence in the degree of solidification, as evidenced by the formation of a mechanical skin prior to wrinkling. It is hypothesized that compressive elastic stress develops in the still swellable skin when unreacted low-molecular-weight material from beneath diffuses up into the monomer- or oligomer-depleted crosslinking skin and swells it. This com pressive stress, if above a critical value, buckles the skin to produce wrinkles. Experimentally observed compositional requirements for wrinkle formation were consistent with the proposed mechanism. The size of the wrinkles can be controlled by varying formulation parameters such as the amount of catalyst or crosslinker. Increasing the amount of catalyst decreased both the wavelength and the amplitude of the wrinkle pattern. Increasing the amount of crosslinker initially increased the amplitude of the wrinkles; after reaching a maximum level, the wrinkle amplitude decreased. DSC was a useful tool to understand the critical reactions responsible for wrinkling in this system. © 2005 Wiley Periodicals, Inc.
引用
收藏
相关论文
共 50 条
  • [1] Wrinkling of epoxy powder coatings
    Basu, SK
    Scriven, LE
    Francis, LF
    McCormick, AV
    Reichert, VR
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (01) : 116 - 129
  • [2] Crosslinking in powder coatings: Epoxy wrinkle
    Reichert, VR
    Basu, SK
    Scriven, LE
    Francis, LF
    McCormick, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U585 - U585
  • [3] Formulating matt epoxy powder coatings
    Dubnova, A.B.
    Evtukhov, N.Z.
    Garynova, G.N.
    Mashlyakovskij, L.N.
    Lakokrasochnye Materialy i Ikh Primenenie, 2001, (7-8):
  • [4] PROTECTION OF STEEL TUBES BY COATINGS WITH EPOXY POWDER
    HUGUES, P
    CORROSION, 1973, 21 (01) : 58 - 59
  • [5] THERMAL-ANALYSIS OF EPOXY POWDER COATINGS
    SICKFELD, J
    NEUBERT, D
    THERMOCHIMICA ACTA, 1988, 134 : 291 - 299
  • [6] Model epoxy powder coatings and their adhesion to steel
    Rouw, AC
    PROGRESS IN ORGANIC COATINGS, 1998, 34 (1-4) : 181 - 192
  • [7] Model epoxy powder coatings and their adhesion to steel
    Rouw, A.C.
    Progress in Organic Coatings, 1997, 34 (1-4): : 181 - 192
  • [8] EPOXY POWDER COATINGS FOR PIPELINES - A CASE STUDY.
    Schemberger, D.
    Powder coatings, 1981, 4 (03): : 5 - 7
  • [9] CHARACTERIZATION OF CURED EPOXY POWDER COATINGS BY SOLVENT ABSORPTION
    ROMANCHICK, WA
    GEIBEL, JF
    ACS SYMPOSIUM SERIES, 1982, 184 : 199 - 212
  • [10] CHARACTERIZATION OF CURED EPOXY POWDER COATINGS BY SOLVENT ABSORPTION
    ROMANCHICK, WA
    GEIBEL, JF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 118 - ORPL