Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction-diffusion medium

被引:0
|
作者
Princeton Univ, Princeton, United States [1 ]
机构
来源
Comput Methods Appl Mech Eng | / 3卷 / 253-275期
关键词
The authors gratefully acknowledge Dr. Anil Bangia who participated in an earlier study [1 1; the work presented here has extensively benefitted from computer algorithms he developed in his Thesis work. ]'he work was partially supported by the National Science Foundation;
D O I
暂无
中图分类号
学科分类号
摘要
47
引用
收藏
相关论文
共 50 条
  • [1] Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction-diffusion medium
    Krishnan, J
    Kevrekidis, IG
    Or-Guil, M
    Zimmerman, MG
    Bär, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 170 (3-4) : 253 - 275
  • [2] Accumulations of T-points in a model for solitary pulses in an excitable reaction-diffusion medium
    Homburg, AJ
    Natiello, MA
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 201 (3-4) : 212 - 229
  • [3] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [4] Stability and bifurcation analysis of a reaction-diffusion equation with distributed delay
    Zuo, Wenjie
    Song, Yongli
    NONLINEAR DYNAMICS, 2015, 79 (01) : 437 - 454
  • [5] Stability and bifurcation analysis of reaction-diffusion neural networks with delays
    Zhao, Hongyong
    Yuan, Jinglan
    Zhang, Xuebing
    NEUROCOMPUTING, 2015, 147 : 280 - 290
  • [6] Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion model
    Zimmermann, MG
    Firle, SO
    Natiello, MA
    Hildebrand, M
    Eiswirth, M
    Bar, M
    Bangia, AK
    Kevrekidis, IG
    PHYSICA D, 1997, 110 (1-2): : 92 - 104
  • [7] Propagation failures, breathing pulses, and backfiring in an excitable reaction-diffusion system
    Manz, Niklas
    Steinbock, Oliver
    CHAOS, 2006, 16 (03)
  • [8] Numerical bifurcation analysis of lattice Boltzmann models: A reaction-diffusion example
    Van Leemput, P
    Lust, K
    COMPUTATIONAL SCIENCE - ICCS 2004, PROCEEDINGS, 2004, 3039 : 572 - 579
  • [9] Stability and bifurcation analysis in a delayed reaction-diffusion malware propagation model
    Zhu, Linhe
    Zhao, Hongyong
    Wang, Xiaoming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (08) : 852 - 875
  • [10] Hopf Bifurcation in an Oscillatory-Excitable Reaction-Diffusion Model with Spatial Heterogeneity
    Ambrosio, Benjamin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (05):