A model approximation scheme for planning in partially observable stochastic domains

被引:0
|
作者
Zhang, Nevin L. [1 ]
Liu, Wenju [1 ]
机构
[1] Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:199 / 230
相关论文
共 50 条
  • [1] A model approximation scheme for planning in partially observable stochastic domains
    Zhang, NL
    Liu, WJ
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1997, 7 : 199 - 230
  • [2] Planning and acting in partially observable stochastic domains
    Kaelbling, LP
    Littman, ML
    Cassandra, AR
    [J]. ARTIFICIAL INTELLIGENCE, 1998, 101 (1-2) : 99 - 134
  • [3] GOAL-ORIENTED ACTION PLANNING IN PARTIALLY OBSERVABLE STOCHASTIC DOMAINS
    Huang, Xiangyang
    Du, Cuihuan
    Peng, Yan
    Wang, Xuren
    Liu, Jie
    [J]. 2012 IEEE 2nd International Conference on Cloud Computing and Intelligent Systems (CCIS) Vols 1-3, 2012, : 1381 - 1385
  • [4] Creating Affective Autonomous Characters Using Planning in Partially Observable Stochastic Domains
    Huang, Xiangyang
    Zhang, Shudong
    Shang, Yuanyuan
    Zhang, Weigong
    Liu, Jie
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2017, 9 (01) : 42 - 62
  • [5] Interleaving execution and planning for nondeterministic, partially observable domains
    Bertoli, P
    Cimatti, A
    Traverso, P
    [J]. ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 657 - 661
  • [6] Cooperative planning and plan execution in partially observable dynamic domains
    Fraser, G
    Wotawa, F
    [J]. ROBOCUP 2004: ROBOT SOCCER WORLD CUP VIII, 2005, 3276 : 524 - 531
  • [7] Planning for Weakly-Coupled Partially Observable Stochastic Games
    Guo, AnYuan
    Lesser, Victor
    [J]. 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1715 - 1716
  • [8] Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains
    Gumbsch, Christian
    Butz, Martin, V
    Martius, Georg
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [9] Analyzing and Escaping Local Optima in Planning as Inference for Partially Observable Domains
    Poupart, Pascal
    Lang, Tobias
    Toussaint, Marc
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2011, 6912 : 613 - 628
  • [10] Planning in partially-observable switching-mode continuous domains
    Brunskill, Emma
    Kaelbling, Leslie Pack
    Lozano-Perez, Tomas
    Roy, Nicholas
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2010, 58 (3-4) : 185 - 216