MODELING OF THE SPACE-TIME STRUCTURE OF DEVELOPED TWO-DIMENSIONAL TURBULENT CONVECTION.

被引:0
|
作者
Frik, P.G. [1 ]
机构
[1] USSR Acad of Sciences, Sverdlovsk, USSR, USSR Acad of Sciences, Sverdlovsk, USSR
来源
Fluid mechanics. Soviet research | 1987年 / 16卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
5
引用
收藏
页码:49 / 54
相关论文
共 50 条
  • [2] Two-dimensional turbulent convection
    Mazzino, Andrea
    PHYSICS OF FLUIDS, 2017, 29 (11)
  • [3] POSITIONING IN A FLAT TWO-DIMENSIONAL SPACE-TIME
    Ferrando, J. J.
    SPANISH RELATIVITY MEETING, ERE2007: RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2008, 30 (323-327): : 323 - 327
  • [4] (TAB) FOR A TWO-DIMENSIONAL VAIDYA SPACE-TIME
    BALBINOT, R
    BROWN, MR
    PHYSICS LETTERS A, 1984, 100 (02) : 80 - 81
  • [5] Two-Dimensional Simulation of the Phenomena of Forced and Natural Convection.
    Robichaud, Michel
    Methot, J.-Claude
    Dupuis, Marc
    Dernedde, Edgar
    1600, (65):
  • [6] Two-dimensional space-time simmetry in hyperbolic functions
    Catoni, F
    Zampetti, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (12): : 1433 - 1440
  • [7] THE ZITTERBEWEGUNG OF A DIRAC PARTICLE IN TWO-DIMENSIONAL SPACE-TIME
    ICHINOSE, T
    TAMURA, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) : 103 - 109
  • [8] Positioning with stationary emitters in a two-dimensional space-time
    Coll, Bartolome
    Ferrando, Joan Josep
    Morales, Juan Antonio
    PHYSICAL REVIEW D, 2006, 74 (10)
  • [9] FERMION MODELS IN TWO-DIMENSIONAL CURVED SPACE-TIME
    SARAVI, REG
    SCHAPOSNIK, FA
    VUCETICH, H
    PHYSICAL REVIEW D, 1984, 30 (02): : 363 - 367
  • [10] Hyperbolic trigonometry in two-dimensional space-time geometry
    Catoni, F
    Cannata, R
    Catoni, V
    Zampetti, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2003, 118 (05): : 475 - 492