Implications of the noncrossing property of Bohm trajectories in one-dimensional tunneling configurations

被引:0
|
作者
机构
来源
Phys Rev A | / 4卷 / 2594期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Implications of the noncrossing property of Bohm trajectories in one-dimensional tunneling configurations
    Oriols, X
    Martin, F
    Sune, J
    PHYSICAL REVIEW A, 1996, 54 (04): : 2594 - 2604
  • [2] TUNNELING LEVELS AND SPECIFIC-HEAT OF ONE-DIMENSIONAL CHAOTIC CONFIGURATIONS
    SCHILLING, R
    PHYSICAL REVIEW LETTERS, 1984, 53 (23) : 2258 - 2261
  • [3] Homoclinic trajectories in one-dimensional dynamics
    Fedorenko, V. V.
    Sharkovsky, A. N.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) : 579 - 588
  • [4] ONE-DIMENSIONAL TO ONE-DIMENSIONAL TUNNELING BETWEEN ELECTRON WAVE-GUIDES
    EUGSTER, CC
    DELALAMO, JA
    ROOKS, MJ
    MELLOCH, MR
    APPLIED PHYSICS LETTERS, 1994, 64 (23) : 3157 - 3159
  • [5] TUNNELING TIMES FOR ONE-DIMENSIONAL SYSTEMS
    GASPARIAN, V
    ORTUNO, M
    RUIZ, J
    CUEVAS, E
    POLLAK, M
    PHYSICAL REVIEW B, 1995, 51 (10): : 6743 - 6746
  • [6] TUNNELING IN ONE-DIMENSIONAL IDEAL BARRIERS
    KOWALSKI, JM
    FRY, JL
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (10) : 2407 - 2415
  • [7] Aharonov-Bohm effect in one-dimensional systems
    Liu, YL
    PHYSICS LETTERS A, 2002, 301 (5-6) : 446 - 450
  • [8] Thermodynamics of trajectories of the one-dimensional Ising model
    Loscar, Ernesto S.
    Mey, Antonia S. J. S.
    Garrahan, Juan P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [9] Trajectories of intervals in one-dimensional dynamical systems
    Fedorenko, V. V.
    Romanenko, E. Yu.
    Sharkovsky, A. N.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (8-9) : 821 - 828
  • [10] Tunneling of a quantum breather in a one-dimensional chain
    Fluerov, V.
    Schilling, R.
    Flach, S.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (01):