Finding a shortest vector in a two-dimensional lattice modulo m

被引:0
|
作者
Technische Universitat Graz, Graz, Austria [1 ]
机构
来源
Theor Comput Sci | / 1-2卷 / 303-308期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
10
引用
收藏
相关论文
共 50 条
  • [1] Finding a shortest vector in a two-dimensional lattice module m
    Rote, G
    THEORETICAL COMPUTER SCIENCE, 1997, 172 (1-2) : 303 - 308
  • [2] AN ALGORITHM FOR FINDING A SHORTEST VECTOR IN A 2-DIMENSIONAL MODULAR LATTICE
    LEMPEL, M
    PAZ, A
    THEORETICAL COMPUTER SCIENCE, 1994, 125 (02) : 229 - 241
  • [3] Observation of two-dimensional lattice vector solitons
    Chen, ZG
    Bezryadina, A
    Makasyuk, I
    Yang, JK
    OPTICS LETTERS, 2004, 29 (14) : 1656 - 1658
  • [4] On the complexity of finding paths in a two-dimensional domain I: Shortest paths
    Chou, AW
    Ko, KI
    MATHEMATICAL LOGIC QUARTERLY, 2004, 50 (06) : 551 - 572
  • [5] Observation of two-dimensional coherent surface vector lattice solitons
    Heinrich, M.
    Kartashov, Y. V.
    Szameit, A.
    Dreisow, F.
    Keil, R.
    Nolte, S.
    Tuennermann, A.
    Vysloukh, V. A.
    Torner, L.
    OPTICS LETTERS, 2009, 34 (11) : 1624 - 1626
  • [6] The MacWilliams theorem for two-dimensional modulo metrics
    Huber, K
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (01) : 41 - 48
  • [7] The MacWilliams theorem for two-dimensional modulo metrics
    Klaus Huber
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 41 - 48
  • [8] MacWilliams theorem for two-dimensional modulo metrics
    Deutsche Telekom AG, Darmstadt, Germany
    Appl Algebra Eng Commun Comput, 1 (41-48):
  • [9] Finding Two-Dimensional Peaks
    Silagadze, Z. K.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2007, 4 (01) : 73 - 80
  • [10] Two-dimensional direction finding of coherent signals with a linear array of vector hydrophones
    Kun Wang
    Jin He
    Ting Shu
    Zhong Liu
    Multidimensional Systems and Signal Processing, 2017, 28 : 293 - 304