Optimal control and geodesic flows

被引:0
|
作者
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Syst Control Lett | / 2卷 / 65-72期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Optimal control and geodesic flows
    Bloch, AM
    Crouch, PE
    SYSTEMS & CONTROL LETTERS, 1996, 28 (02) : 65 - 72
  • [2] Geodesic compatibility and integrability of geodesic flows
    Topalov, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) : 913 - 929
  • [3] Are Hamiltonian flows geodesic flows?
    McCord, C
    Meyer, KR
    Offin, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (03) : 1237 - 1250
  • [4] GEODESIC FLOWS AND ISOTROPIC FLOWS
    OTSUKI, N
    PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (01): : 10 - &
  • [5] Collective geodesic flows
    Butler, LT
    Paternain, GP
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (01) : 265 - +
  • [6] GEODESIC FLOWS MODELLED BY EXPANSIVE FLOWS
    Gelfert, Katrin
    Ruggiero, Rafael O.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 61 - 95
  • [7] Inheriting geodesic flows
    Lortan, DB
    Maharaj, SD
    Dadhich, NK
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (06): : 715 - 722
  • [8] Inheriting geodesic flows
    D B Lortan
    S D Maharaj
    N K Dadhich
    Pramana, 2001, 56 : 715 - 722
  • [9] Equicontinuous geodesic flows
    Pries, Christian
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 1951 - 1963
  • [10] Templates for geodesic flows
    Pinsky, Tali
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 211 - 235