Convergence of the modified fixed-point method in magnetic field problems with hysteresis

被引:0
|
作者
Ossart, F. [1 ]
Ionita, V. [1 ]
机构
[1] ENSIEG, Saint-Martin-d'Heres, France
来源
EPJ Applied Physics | 1999年 / 5卷 / 01期
关键词
Algorithms - Computational methods - Convergence of numerical methods - Finite element method - Iterative methods - Magnetic hysteresis - Magnetic recording - Mathematical models - Problem solving;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:63 / 69
相关论文
共 50 条
  • [1] Convergence of the modified fixed-point method in magnetic field problems with hysteresis
    Ossart, E
    Ionita, V
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 1999, 5 (01): : 63 - 69
  • [2] A fast fixed-point method for solving magnetic field problems in media of hysteresis
    Dlala, Emad
    Belahcen, Anouar
    Arkkio, Antero
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1214 - 1217
  • [3] A Modified Fixed-Point Iteration Algorithm for Magnetic Field Computation With Hysteresis Models
    Yue, Shuaichao
    Yin, Jiatong
    Li, Yongjian
    Dou, Yu
    Chen, Ruiying
    Liu, Jun
    [J]. 2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [4] Analysis of the convergence of the fixed-point method used for solving Nonlinear rotational magnetic field problems
    Dlala, Emad
    Arkkio, Antero
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (04) : 473 - 478
  • [5] Newton-Raphson method and fixed-point technique in finite element computation of magnetic field problems in media with hysteresis
    Saitz, J
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (03) : 1398 - 1401
  • [6] Jiles-Atherton and fixed-point combined technique for time periodic magnetic field problems with hysteresis
    Chiampi, M.
    Chiarabaglio, D.
    Repetto, M.
    [J]. IEEE Transactions on Magnetics, 1995, 31 (6 pt 3): : 4306 - 4311
  • [7] Optimal Convergence of the Fixed-Point Method for Nonlinear Eddy Current Problems
    Koczka, Gergely
    Ausserhofer, Stefan
    Biro, Oszkar
    Preis, Kurt
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 948 - 951
  • [8] A Fixed-Point Iteration Method With Quadratic Convergence
    Walker, K. P.
    Sham, T. -L.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (03):
  • [9] Speed-up of nonlinear magnetic field analysis using a modified fixed-point method
    Takahashi, Norio
    Shimomura, Kousuke
    Miyagi, Daisuke
    Kaimori, Hiroyuki
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 32 (05) : 1749 - 1759
  • [10] Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems
    L. C. Ceng
    M. Teboulle
    J. C. Yao
    [J]. Journal of Optimization Theory and Applications, 2010, 146 : 19 - 31