How to check if a finitely generated commutative monoid is a principal ideal commutative monoid

被引:1
|
作者
Rosales, Jose Carlos [1 ]
Garcia-Sanchez, Pedro A. [1 ]
Garcia-Garcia, Juan Ignacio [1 ]
机构
[1] Universidad de Granada, Granada, Spain
关键词
Algorithms - Linear algebra - Set theory;
D O I
10.1145/345542.345655
中图分类号
学科分类号
摘要
Commutative monoids are characterized to satisfy the condition that all ideals are principal. Monoids which are principal ideal monoids (PIM) were characterized and special attention was paid to finitely generated monoids. This characterization was used to construct an algorithm for deciding whether a finitely generated commutative monoid satisfied the condition.
引用
收藏
页码:288 / 291
相关论文
共 50 条
  • [1] Commutative Monoid Duality
    Jan Niklas Latz
    Jan M. Swart
    Journal of Theoretical Probability, 2023, 36 : 1088 - 1115
  • [2] Commutative monoid homology
    Pierre Antoine Grillet
    Semigroup Forum, 2021, 103 : 495 - 549
  • [3] Commutative Monoid Duality
    Latz, Jan Niklas
    Swart, Jan M.
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) : 1088 - 1115
  • [4] Commutative monoid homology
    Grillet, Pierre Antoine
    SEMIGROUP FORUM, 2021, 103 (02) : 495 - 549
  • [5] Commutative monoid rings with n-generated ideals
    Okon, JS
    Vicknair, JP
    ADVANCES IN COMMUTATIVE RING THEORY, 1999, 205 : 483 - 500
  • [6] A Note on Brauer Commutative Monoid
    Deore, Rajendra
    Gujarathi, Pritam
    THAI JOURNAL OF MATHEMATICS, 2014, 12 (01): : 45 - 54
  • [7] Principal ideals of finitely generated commutative monoids
    Rosales, JC
    García-García, JI
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2002, 52 (01) : 75 - 85
  • [8] Principal ideals of finitely generated commutative monoids
    J. C. Rosales
    J. I. García-García
    Czechoslovak Mathematical Journal, 2002, 52 : 75 - 85
  • [9] Torsion factors of commutative monoid semirings
    Korbelar, Miroslav
    SEMIGROUP FORUM, 2023, 106 (03) : 662 - 675
  • [10] COMMUTATIVE MONOID RINGS AS HILBERT RINGS
    GILMER, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (01) : 15 - 18