NEWTON'S METHOD FOR CONSTRAINED OPTIMIZATION.

被引:0
|
作者
Goodman, Jonathan [1 ]
机构
[1] New York Univ, Courant Inst of, Mathematical Sciences, New York, NY,, USA, New York Univ, Courant Inst of Mathematical Sciences, New York, NY, USA
来源
| 1600年 / 33期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
OPTIMIZATION
引用
收藏
相关论文
共 50 条
  • [1] NONLINEAR PROJECTION METHOD FOR CONSTRAINED OPTIMIZATION.
    Teixeira de Freitas, J.A.
    Moitinho de Almeida, J.P.
    Civil Engineering Systems, 1984, 1 (06): : 294 - 300
  • [2] NEWTON METHOD FOR CONSTRAINED OPTIMIZATION
    GOODMAN, J
    MATHEMATICAL PROGRAMMING, 1985, 33 (02) : 162 - 171
  • [3] A truncated Newton method for constrained optimization
    Di Pillo, G
    Lucidi, S
    Palagi, L
    NONLINEAR OPTIMIZATION AND RELATED TOPICS, 2000, 36 : 79 - 103
  • [4] Newton's method for large bound-constrained optimization problems
    Lin, CJ
    Moré, JJ
    SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (04) : 1100 - 1127
  • [5] Quantum gradient descent and Newton's method for constrained polynomial optimization
    Rebentrost, Patrick
    Schuld, Maria
    Wossnig, Leonard
    Petruccione, Francesco
    Lloyd, Seth
    NEW JOURNAL OF PHYSICS, 2019, 21
  • [6] Newton's method and quasi-Newton-SQP method for general LC1 constrained optimization
    Sun, Wenyu
    Applied Mathematics and Computation (New York), 1998, 92 (01): : 69 - 84
  • [7] Newton's method and quasi-Newton-SQP method for general LC1 constrained optimization
    Sun, WY
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 92 (01) : 69 - 84
  • [8] An inexact Newton method for nonconvex equality constrained optimization
    Byrd, Richard H.
    Curtis, Frank E.
    Nocedal, Jorge
    MATHEMATICAL PROGRAMMING, 2010, 122 (02) : 273 - 299
  • [9] An inexact Newton method for nonconvex equality constrained optimization
    Richard H. Byrd
    Frank E. Curtis
    Jorge Nocedal
    Mathematical Programming, 2010, 122
  • [10] Newton's method may fail to recognize proximity to optimal points in constrained optimization
    Andreani, R.
    Martinez, J. M.
    Santos, L. T.
    MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) : 547 - 555