Finite deformation theory of viscoplasticity based on overstress. Part I. Constitutive equations

被引:0
|
作者
Nishiguchi, I. [1 ]
Sham, T.-L. [1 ]
Krempl, E. [1 ]
机构
[1] Rensselaer Polytechnic Inst, Troy, United States
来源
关键词
Cauchy Stress - Finite Deformation Theory - Modified Jaumann Rate - Overstress;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:548 / 552
相关论文
共 50 条
  • [1] A FINITE DEFORMATION-THEORY OF VISCOPLASTICITY BASED ON OVERSTRESS .1. CONSTITUTIVE-EQUATIONS
    NISHIGUCHI, I
    SHAM, TL
    KREMPL, E
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1990, 57 (03): : 548 - 552
  • [2] ADAPTIVE TIME-STEPPPING SCHEME FOR THE VISCOPLASTICITY THEORY BASED ON OVERSTRESS.
    Chen, Han
    Krempl, Erhard
    Computers and Structures, 1986, 22 (04): : 573 - 578
  • [3] Modeling of the monotonic and cyclic swift effects using anisotropic finite viscoplasticity theory based on overstress (AFVBO): Part I - Constitutive model
    Colak, OU
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (18-19) : 5301 - 5311
  • [4] Finite element formulation for finite deformation, isotropic viscoplasticity theory based on overstress (FVBO)
    Gomaa, S
    Sham, TL
    Krempl, E
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2004, 41 (13) : 3607 - 3624
  • [5] TWO-STEP FINITE-ELEMENT TIME-INTEGRATION SCHEME FOR THE VISCOPLASTICITY THEORY BASED ON OVERSTRESS.
    Chen, Han
    Krempl, Erhard
    Computers and Structures, 1986, 22 (04): : 625 - 628
  • [6] Modeling deformation behavior of polymers with viscoplasticity theory based on overstress
    Colak, OU
    INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (01) : 145 - 160
  • [7] Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules Part I: Constitutive theory and numerical integration
    E. Diegele
    W. Jansohn
    Ch. Tsakmakis
    Computational Mechanics, 2000, 25 : 1 - 12
  • [8] Finite deformation plasticity and viscoplasticity laws exhibiting nonlinear hardening rules Part I: Constitutive theory and numerical integration
    Diegele, E
    Jansohn, W
    Tsakmakis, C
    COMPUTATIONAL MECHANICS, 2000, 25 (01) : 1 - 12
  • [9] A FINITE-ELEMENT METHOD FOR AN INCREMENTAL VISCOPLASTICITY THEORY BASED ON OVERSTRESS
    SHAM, TL
    CHOW, HW
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1989, 8 (06) : 415 - 436
  • [10] SPHERE UNDER INTERNAL PRESSURE - A COMPARISON OF TWO TIME-INTEGRATION SCHEMES FOR THE VISCOPLASTICITY THEORY BASED ON OVERSTRESS.
    Wang, Guifang
    Chen, Han
    Krempl, Erhard
    Computers and Structures, 1985, 21 (06): : 1273 - 1281